Refinement in Phenix

Argonne, June, 2011

Paul Adams

Lawrence Berkeley Laboratory and Department of Bioengineering UC Berkeley

The Crystallographic Process

Overview of Structure Refinement

 Structure refinement is an iterative process that changes the model parameters while improving the fit to the experimental data

Crystallographic Structure Refinement

- An optimization algorithm is used to minimize a target function by changing the parameters of the model
- Parameters:
 - coordinates, B-values, occupancies
- Optimization algorithm:
 - minimization, simulated annealing
- Target function (Objective function):
 - Function based on electron density (real-space refinement)
 - Function based on structure factors (reciprocal-space refinement)

$$E = E_{chem} + w_a \sum_{hkl} \frac{1}{\sigma^2} (|F_o| - |F_c|)^2$$

Phenix

Why do we need Refinement?

- The models generated by hand our automatically typically have errors and are incomplete:
 - Missing atoms that should be included (missing domains, loops, sidechains, ligands, water, ...)
 - Atoms that that have been misplaced
- This is a result of:
 - Experimental phases are sometimes poor, especially at low resolution
 - Molecular Replacement phases can generate model bias
 - Every atom that has an error affects all calculated structure factors and thus changes the density at all other points in the map
- As the model is improved, the phases improve, revealing new aspects of the structure (loops, sidechains, ligands, water, ...)

The Model

- Structure factors from the model are calculated using a FFT (by sampling the Gaussian form factors on a grid)
- The model has to include a contribution from the bulk solvent in the crystal (calculated using a mask around the protein)

$$\mathbf{F} = k\{\mathbf{F}_{calc} \exp[-\Delta B(\sin\theta/\lambda)^2] + d_{solv}\mathbf{F}_{solv} \exp[-B_{solv}(\sin\theta/\lambda)^2]\}$$

Phe

The X-ray Term

- Real space:
 - Least-squares residual: $\Sigma (\rho_{obs} \rho_{calc})^2$
 - Convolution product: $\Sigma \rho_{obs} \times \rho_{calc}$
 - Sum of differences: $\Sigma |\rho_{obs} \rho_{calc}|$

- Reciprocal space:
 - Least-squares residual: $\Sigma (|F_{obs}| k |F_{calc}|)^2$
 - Correlation coefficient between |F_{obs}| and |F_{calc}|
 - Functions including phases:
 - $\Sigma w [(A_{obs} k A_{calc})^2 + (B_{obs} k B_{calc})^2]$

Image from ccp4wiki

Observations and Parameters

- In contrast to small molecule crystallography we have:
 - Large unit cells, typically 50% disordered solvent, flexibility
 - Often limited resolution (2.5Å or worse)
 - Observation to parameter ratios close to 1 or worse

Resolution	Reflections	xyz	xyzB	xyzU
3.0	3,500	0.8	0.6	0.3
2.5	6,800	1.6	1.2	0.5
1.9	13,500	3.1	2.3	1.0
I.5	29,800	6.8	5.1	2.3
I.2	58,800	13.3	10.0	4.4
1.0	81,300	18.5	13.8	6.1

Improving the Observation to Parameter Ratio

- To make refinement practical the observation to parameter ratio is increased using restraints and constraints:
- Restraint
 - Model property ~ ideal value
 - Adds prior observed information (reduces the number of parameters refined)
 - Inclusion of chemical information in the objective function
- Constraint
 - Model property = ideal value
 - Removes one or more parameters from the model

Other Restraints

- Atomic displacement parameters
 - Bonded atoms should have similar displacement parameters
 - Restrain bonded atoms to have similar displacement values:
 - $E = \Sigma_{bonds} W (ADP_1 ADP_2)^2$
 - Restrain displacement parameters for each atom to be similar to those of the atoms in their neighborhood:

$$E_{ADP} = \sum_{i=1}^{N_{atoms}} \left[\sum_{j=1}^{M_{atoms}} \frac{1}{r_{ij}^{distance_power}} \frac{\left(U_i - U_j\right)^2}{\left(\frac{U_i + U_j}{2}\right)^{average_power}} \right|_{sphereR} \right]$$

Constraints

- Rigid-body refinement
 - For example, molecule consists of two domains, only refine position and orientation of each domain uses only 2 * (3 rotational + 3 translation) = 12 parameters
 - So few parameters it requires only low-resolution data
- Rigid groups
 - Torsion angle refinement
- Atomic Displacement Parameters
 - All atoms have the same B one parameter
 - All main-chain and all side-chain atoms in each residue have the same B one or two parameters per residue
 - TLS refinement 20 parameters per group
- Non-crystallographic symmetry
 - A number of N NCS-related molecules/domains are assumed to be identical
 - Reduces the number of parameters by a factor N

Restraint and Constraint Values

- Bond lengths and angles for proteins come from a study of Engh & Huber
 - They analysed the geometry of fragments of small molecule crystal structures similar to those found in amino acids
 - This yielded a list of distinct atom types, ideal bond lengths and angles, and estimates of their variance
 - Modifications of some values have been necessary over time (based on very high resolution structures)
- A similar analysis has been carried out for nucleic acids
- For other compounds values can be generated à la Engh & Huber, calculated by certain programs, or found in databases

Reducing Overfitting in Refinement

- <u>Cross-validation</u>
 - Brunger, Nature 355, 472, 1992
- <u>Torsion angle dynamics</u> refinement
 - Rice & Brunger, Proteins 19, 277, 1994
- <u>Translation-Libration-Screw</u> refinement
 - Winn et al., Acta Cryst. D 57, 122-133, 2001
- <u>Maximum likelihood</u> formulation of refinement
 - Bricogne, Meth. Enzymol. 276, 361, 1997
 - Murshudov, Dodson, Vagin, CCP4, 1996
 - Pannu & Read, Acta Cryst. A 52, 659-668, 1996
 - Adams, Pannu, Read, Brunger, PNAS 94, 5018, 1997

Number of Observations and Parameterizations

	Worse than 3.5Å	3.5Å to 2.5Å	2.5Å to 1.5Å	1.5Å to 1.0Å	Better than I.0Å
Coordinates	Rigid bodies	Chemical constraints	Chemical constraints and restraints	Chemical restraints	Unrestrained
Atomic Displacement Parameters	Domains, isotropic or anisotropic. TLS	Grouped, isotropic, TLS	Individual, restrained, isotropic, TLS	Individual, restrained, anisotropic	Individual, unrestrained, anisotropic
NCS	Constrained	Constrained and/or tightly restrained	Restrained and/ or unrestrained	Unrestrained	Unrestrained

- Start with the most conservative parameterization
- Only move to a less conservative parameterization after consulting minimally biased indicators (free R-value, Ramachandran plot, chemistry)
- Experimental phases usually permit a less conservative final parameterization

Comprehensive Structure Refinement

Low

- Rigid body
- Group ADP
- Torsion angle constraints
- Simulated annealing

•NCS restraints (including automatic NCS determination and restraints generation)

- •TLS refinement
- Occupancies (individual or group, automatically constrained for alternate side chains)
- •Anomalous scattering factor refinement (individual or group)
- Twinned refinement target
- Joint refinement against X-ray and Neutron data

Pavel Afonine, Nat Echols, Ralf Grosse-Kunstleve & Peter Zwart, Lawrence Berkeley Laboratory

Medium/High

- Restrained coordinates
- Restrained ADPs (iso/aniso)
- Automated water picking

Ultra-high

- Interatomic scatterers
- Unrestrained refinement
- Explicit hydrogens

Acta Cryst. 2005, **D61**:850-855.

Acta Cryst. 2007, **D63**:1194-1197.

Why Automate Structure Refinement?

Refinement Protocol

Input data and model processing

Refinement strategy selection

Bulk solvent / Anisotropic scaling / Twin fraction

Ordered solvent addition and removal

Target weight calculation

Coordinate refinement Rigid body / Individual Minimization / Annealing

Atomic Displacement Parameter refinement Rigid body (TLS) / Group / Individual (Isotropic & Anisotropic)

> Occupancy refinement Group / Individual

> > Output (model, maps, statistics)

Macrocycle

Pavel Afonine, Ralf Grosse-Kunstleve & Peter Zwart, Lawrence Berkeley Laboratory

Robust Scaling & Bulk Solvent Correction

$$\mathbf{F}_{\text{MODEL}} = k_{\text{OVERALL}} e^{-\mathbf{s} \mathbf{U}_{\text{CRYSTAL}} \mathbf{s}^{t}} \left(\mathbf{F}_{\text{CALC}_\text{ATOMS}} + k_{\text{SOL}} e^{-\frac{B_{\text{SOL}} \mathbf{s}^{2}}{4}} \mathbf{F}_{\text{MASK}} \right)$$

- Bulk solvent scaling uses a grid search with optimization
- Combines both bulks solvent and anisotropic scaling
- Anisotropic scaling (PDB: 2mhr)

Effect of Bulk Solvent

Acta Cryst. 2005, D61:850-855.

BERKELEY LAB

Pavel Afonine, Lawrence Berkeley Laboratory

Modeling Atomic Displacements

- Atom displacements are typically anisotropic
 - $U_{Total} = U_{Crystal} + U_{Rigid} + U_{Torsion} + U_{Atom}$

Improved ADP Refinement

Synaptotagmin, 3.2Å

PHENIX – Isotropic restrained ADP R-free=27.7% R=24.6%

PHENIX – TLS + Isotropic ADP R-free=24.4% R=20.7%

Refinement GUI

Configure Refine_2	×	
Input data Refinement settings Output		
Input files		
File path	Format Data type	
Q /Users/pdadams/Work/Scratch/phenix/rnase-s-tutorial/rnase-s/rnase Q /Users/pdadams/Work/Scratch/phenix/rnase-s-tutorial/rnase-s/rnase	25 ccp4_mtz X-ray data -s PDB model	
+ - Modify file data type	Image: Preferences Help Run Abort Save Save Save Save Save	
	Configure Refine 2	
Space group : P 21 21 21 Unit cell : 64.897 78.323 38.792 90.0	0 90.1 Input data Refinement settings Output	
	Strategy	
X-ray data and experimental phases Data labels : FNAT,SIGFNAT,merged R-free label :	Refinement strategy: Individual sites Real-space Rigid body Individual ADPs Group ADPs TLS parameters Occupancies Anomalous groups Modify selections for: Individual sites Individual sites Edit Number of cycles : 1	
High resolution : Å Low resolution :	General Parameters	
	Automatically add hydrogens to model Update waters	
Neutron data	Simulated annealing (Cartesian) Simulated annealing (Torsion angles) 🗹 Find NCS restraints automatically	
	✓ Fix bad sidechain rotamers Automatically correct N/Q/H errors Secondary structure restraints	
Data labels :	Use experimental phases Model interatomic scattering Reference model restraints	
High resolution : Å Low resolution :	Target function : ML * Scattering table : n_gaussian * Define NCS groups Miscellaneous settings All parameters	
Idle		
-	Idle Project: mase-s pdadams	
	D b c u c u i N at Echols (I BI)	
RKELEVIAR		

Results - Summary

onfigure R	efine 2									
esulte Geo	metry out	liers Validat	ion Model	quality						
utnut file	s	iners vandat	ion model	quanty						
acput me.	,					_				
Directory: /U:	sers/pdodoms	s/Work/Scratch/pl	henix/rnose-s	-tutorial/rnase-	-s/Refine_2	9				
File path				Format	Data typ	pe				al and beau
<pre>rnase-s_pd</pre>	ladams_refi	ne_2.eff	p	bhil	Effective	e parameters for t	his run			Copen in Coot
् rnase-s_pd	ladams_refi	ne_2.geo	F	DB	Geomet	ry restraints befo	re refinemer	nt		Parat
<pre>_ rnase-s_pd</pre>	ladams_refi	ne_2.log	t	ext	phenix.	refine log file				M Open in PyMOL
<pre></pre>	ladams_refi	ne_2.pdb	P	DB	Refined	model				40.5
<pre></pre>	ladams_refi	ne_2_info.txt	t	ext	Run sun	nmary in text form	nat			Open in PHENIX
	ladams_refi	ne_2_map_coeffs	s.mtz c	cp4_mtz	Map coe	efficients for Coot				The open in the day
<pre></pre>	_									
् rnase-s_pd	-									18
⊰ rnase-s_pd	-									Sequence viewer
efinement	statisti	cs								Sequence viewer
efinement	statistic are statis refinement:	cs tics	Plot statisti	cs by cycle	Plo	ot statistics by	resolutio	n		Sequence viewer
efinement	are statistic refinement: Starting	tics	Plot statisti	cs by cycle	Plo	ot statistics by	resolutio	n		Sequence viewer
efinement	statistic are statis refinement: Starting 0.3611	tics	Plot statisti	cs by cycle	Plo	ot statistics by	resolutio	n		Sequence viewer
efinement	statistic are statis refinement: Starting 0.3611 0.4305	CS tics I F Final 0.2147 0.2718	Plot statisti	cs by cycle	Plo	ot statistics by	resolutio	n		Sequence viewer
efinement	statistic are statis refinement: Starting 0.3611 0.4305 0.028	CS tics I Final 0.2147 0.2718 0.024	Plot statisti	cs by cycle	Plo	ot statistics by	resolutio	n		Sequence viewer
efinement Comparison lefore and after R-work R-free Bonds Angles	statistic are statis refinement: Starting 0.3611 0.4305 0.028 4.517	CS tics Final 0.2147 0.2718 0.024 2.282	Plot statisti	cs by cycle	Plo	ot statistics by	resolutio	n		Sequence viewer
efinement	statistic are statis refinement: Starting 0.3611 0.4305 0.028 4.517	CS tics I Final 0.2147 0.2718 0.024 2.282	Plot statisti	cs by cycle	Plo	ot statistics by	resolutio	n		Sequence viewer
efinement	statistic are statis refinement: Starting 0.3611 0.4305 0.028 4.517	CS tics I Final 0.2147 0.2718 0.024 2.282 bin:	Plot statisti	cs by cycle	Plo	ot statistics by	resolutio	n		Sequence viewer
efinement	statistic are statis refinement: Starting 0.3611 0.4305 0.028 4.517	CS tics I Final 0.2147 0.2718 0.024 2.282 bin: R-work	Plot statisti	cs by cycle	FOM	ot statistics by Phase error Sca	resolutio	n #work	#test	Sequence viewer
efinement efinement Compa tefore and after R-work R-free Bonds Angles C-ray statistics I 49,9818	statistic are statis refinement: Starting 0.3611 0.4305 0.028 4.517 by resolution	CS tics I Final 0.2147 0.2718 0.024 2.282 bin: R-work 0.1726	Plot statisti R-free 0.2082	cs by cycle	FOM 0.87	Phase error Sca	resolutio	n #work 1378	#test 153	Sequence viewer
efinement Compared lefore and after R-work R-free Bonds Angles (-ray statistics l 49.9818 4.2743 -	statistic are statis refinement: Starting 0.3611 0.4305 0.028 4.517 by resolution - 4.2743 - 3.3928	CS tics I final 0.2147 0.2718 0.024 2.282 bin: R-work 0.1726 0.1890	Plot statistic R-free 0.2082 0.2518	%complete 99.5% 98.4%	FOM 0.87 0.87	Phase error Sca 17.44 20.08	resolutio	n #work 1378 1285	#test 153 143	Sequence viewer
efinement compared tefore and after R-work R-free Bonds Angles C-ray statistics I 49.9818 4.2743 3.3928	statistic are statis refinement: Starting 0.3611 0.4305 0.028 4.517 by resolution - 4.2743 - 3.3928 - 2.9640	CS tics I Final 0.2147 0.2718 0.024 2.282 bin: R-work 0.1726 0.1890 0.2342	Plot statisti R-free 0.2082 0.2518 0.2890	%complete 99.5% 98.4% 99.8%	FOM 0.87 0.82	Phase error Sca 17.44 20.08 23.45	resolution	n #work 1378 1285 1290	#test 153 143 144	Sequence viewer

Results - Rebuilding and Validation

Model Validation

- In science we construct models to explain experimental observations
- We must always ask if the model is correct, or as correct as it can be given the experimental uncertainties
 - Does the model fit the experimental data?
 - Does the model confirm prior knowledge?
 - Does the model predict things that we can measure? (typically leads to other experiments)

Validation

- Global validators:
 - R-factors (e.g. Free-R-factor)
 - Overall deviations from ideal bond lengths and bond angles
- Local validators:
 - Deviations from ideal geometry
 - Deviations from known distributions of backbone torsion angles (protein)
 - Deviations from known distributions of side chain conformations (protein)
 - Local fit of model to electron density
 - Contacts between atoms (unlikely chemical interactions, too close atoms)

Validation

- Outlier lists recenter Coot view; Probe dots automatically loaded
 - optional real-space correlation (if reflections available), with B-factor analysis

outliers in graphs also recenter Coot

Parallel validation of multiple structures

 Identifies points of difference between structures of the same protein, with optional map superpositioning

Nat Echols, Nigel Moriarty, Pavel Afonine, Ralf Grosse-Kunstleve (LBL) & Herb Klei (BMS)

Active use of Validation Measures

- Automated fixing of rotamers
- Automated flipping of side chains
- Accounting for local context
- Using prior knowledge about secondary structure as restraints
- Using similar high resolution structures as restraints

Automated Rotamer Fixing

- Electron density can often be ambiguous for some residues (e.g. Leu)
- Methods developed for validation (identifying incorrect rotamers) can be used to automatically fix problem residues

Automated Rotamer Fixing

Headd JJ, Immormino RM, Keedy DA, Emsley P, Richardson DC, Richardson JS. Autofix for backwardfit sidechains: using MolProbity and real-space refinement to put misfits in their place. J Struct Funct Genomics. 2009 Mar; 10(1):83-93.

Jeff Headd, Duke University

Automated Rotamer Fixing in Refinement

- Assessment of local quality of side chains by comparison to rotamer library
- Torsion angle search against density with real space refinement

Protocol

% phenix.refine model.pdb data.hkl fix_rotamers=true

Fix bad sidechain rotamers

Pavel Afonine, LBL Nat Echols, LBL

Testing Performance

Test refinement of 150 structures from PDB in resolution range 1.5-3.0Å:

- Refine original models
 - Basic refinement
 - Basic refinement + local real-space refinement
- Generate distorted models:
 - Remove water
 - For each residue select the most distant rotamer
 - Quick geometry regularization to remove bad clashes
- Refine distorted models
 - Basic refinement
 - Basic refinement + Simulated Annealing
 - Basic refinement + local real-space refinement

(Where basic refinement is individual coordinates, ADPs, occupancies, and solvent model update)

Refinement of Distorted Models

- Errors in rotamers are difficult to fix using gradient methods or simulated annealing
- Local searching and real space refinement can recover the correct rotamers in many cases

Pavel Afonine, LBL

Refinement of Original Models

- Refinement with automated rotamer fixing typically improves free Rvalues
- Many structures in the PDB could have multiple rotamer errors that can be corrected
- More analysis is required (e.g. impact at low resolution)

Pavel Afonine, LBL

Automated Asn/Gln/His Corrections

- Automatically detect and correct flipped N/Q/H residues at each macrocycle
- Uses MolProbity/Reduce methodology (H-bonds, clashes) to determine correct orientation

Problems in Nucleic Acid Structures

- Nucleic acid structures (esp. RNA) are often solved at low resolution
- The interactions between bases are often favorable
- It is common to see geometric problems with the backbone

Jeff Headd & the Richardsons, Duke University

Conformation Dependent Geometry

- Nucleic acids have specific conformational variations in their backbone (arising from different sugar puckers)
- The different puckers lead to different local ideal geometries
- The best pucker is automatically recognized and the restraints dynamically modified

Secondary structure restraints

- For coordinate refinement, restrain hydrogen bond length (or N-O distance if hydrogens absent)
- Automatic annotation using KSDSSP* (phenix.ksdssp)
- Secondary structure groups for phenix.refine provided by phenix.secondary_structure_restraints

12 HELIX 1 ASP A 37 GLY A 1 48 1 1 A 2 ARG A 13 ASP A 14 SHEET 0 2 SER A A 2 LEU A 27 30 -1 O ARG A 29 N ARG A 13 SHEET refinement.secondary structure.helix { selection = "chain 'A' and resseq 263:275" helix class = 1refinement.secondary structure.sheet { first strand = "chain 'A' and resseq 13:14" * Open-source (BSD-like) reimplementation of the strand { DSSP algorithm, by authors of UCSF Chimera selection = "chain 'A' and resseg 27:30" (http://www.cgl.ucsf.edu/Overview/software.html). sense = antiparallel The only free program of its type! bond start current = "chain 'A' and resseq 29" bond start previous = "chain 'A' and resseq 13" Nat Echols, LBL

Base pairing restraints

- Uses PROBE to identify hydrogen bonds in Watson-Crick pairs, which are converted into the reduced syntax
- Automatically included in refinement

Example (protein+RNA): Signal recognition particle (Batey et al. JMB 307:229, 2001) PDB ID: IhqI

Nat Echols & Jeff Headd, LBL

Editing secondary structure

Nat Echols, LBL

Secondary structure restraints: examples

- Automatic annotation with default settings, no H atoms
- DNA-binding protein, 3.1Å (early in refinement)*

SS	R-work	R-free	ΔR	Ramachandran outliers
-	0.2883	0.3689	0.0806	2.52%
+	0.2877	0.3652	0.0775	2.25%

* data provided by A. Schoeffler, UC Berkeley

Bacterial protein, 2.25Å (AutoSol model)

SS	R-work	R-free	ΔR	Ramachandran favored**
-	0.2733	0.3246	0.0523	95.07%
+	0.2723	0.3221	0.0488	96.41%

** no outliers

Careful manual annotation may improve results

Nat Echols, LBL

Hydrogen bond quality control

- Automatic annotation is challenging many false positives and negatives
- Outlier filtering throws out excessively long bonds, but not all of these are truly invalid
- Improved detection and/or prediction methods are needed

Reference Model Restraints for Low Resolution Refinement

- Improve low resolution refinement by using a related higher resolution structure as a reference.
- Generate reference dihedral restraints for all matching dihedral angles between the working model and the reference model.
- Restraints take the form of a simple harmonic:

$$E_{total} = \sum_{i=1}^{n} E_{i} \qquad \{ \begin{aligned} E_{i} &= \omega_{i} \Delta_{i}^{2}, \ \Delta_{i} \leq l \\ E_{i} &= \omega_{i} l^{2}, \ \Delta_{i} > l \end{aligned} \} \qquad \omega_{i} = \frac{1}{\sigma^{2}}$$

- where σ is the ESD, Δ is the difference between the model dihedral and reference dihedral, and l is a 'limit' parameter that limits how far the model dihedral may vary from the reference dihedral before being shut off.
- The 'limit' parameter allows differences between the working and reference models (e.g. hinges, conformational changes)
- Pre-correct rotamer outliers in the working model to match the χ angles of the reference model if the reference model has a proper rotamer at that position.

Jeff Headd, LBL

Reference Structures

- Use the information contained in a welldefined high resolution structure to improve models generated with lower resolution data
- Dihedral angle restraints pulls the model towards the higher resolution reference (until the deviation is too great)

		1GTX alone	10HV	1GTX w/ ref.
	Χ ₁	203.5°	186.4°	185.6°
Leu A 34	X 2	225.6°	45.6°	46.3°
	Rotamer	Outlier	tp	tp
	Χ ₁	295.4°	287.7°	287.7°
Glu A 41	X ₂	177.1°	172.6°	173.0°
	X ₃	47.5°	73.2°	73.0°
	Rotamer	mt-10	mt-10	mt-10

IGTX 10HV

Reference Structures

 Overall statistics are improved - better geometry and better fit to the experimental data

	Validation Criteria	1GTX, no reference	10HV	1GTX, 1OHV reference	Target Value
All-Atom Contacts	Clashscore, all atoms:	24.5	7.98	13.54	
Al-Alom Contacts	Clashscore percentile	89 th	97 th	97 th	
	Poor rotamers:	12.31%	2.30%	4.63%	<1%
	Ramachandran outliers:	0.65%	0.22%	0.27%	< 0.2%
	Ramachandran favored:	92.88%	97.06%	96.14%	> 98%
Protein	Cβ deviations > 0.25Å:	3	0	3	0
Geometry	MolProbity score:	3.16	1.87	2.41	
	MolProbity score percentile	64 th	94 th	96 th	
	Residues with bad bonds:	0.00%	0.00%	0.00%	0%
	Residues with bad angles:	0.38%	0.00%	0.43%	< 0.1%
Besidual	R-work	0.1546		0.1586	
riesiddai	R-free	0.2379		0.2186	

Jeff Headd, LBL

The DEN Method

- Researchers have developed other methods to add prior information into structure refinement and fitting (Schroeder et al., 2010)
- A deformable elastic network is used to restrain the model to an external structure
- Better models are produced (geometric and R-values)

Summary

- Algorithms previously used for validation can be used to automatically correct models during refinement
 - Automated rotamer refitting
 - Automated sidechain flips
- Low resolution structure solution and refinement is challenging, but can be improved
 - Inclusion of external information provides additional observations
 - Secondary structure restraints
 - High resolution reference models
- There is room for improvement of the geometric restraints used in refinement

Challenges Remain

- Low resolution structure solution and refinement
- Structure completion
 - Automated identification, fitting and refinement of ligands, metals, ions, and water
 - Identification, fitting and refinement of discrete disorder (multiple conformations)
 - Representing other forms of disorder
- Automated parameterization of models in refinement
 - ADPs, TLS groups, NCS, hydrogens
- Handling different kinds of twinning and integrating it into the whole structure solution process
- Automated understanding of chemistry

Acknowledgments

• Lawrence Berkeley Laboratory

• Pavel Afonine, Nat Echols, Jeff Headd, Ralf Grosse-Kunstleve, Nigel Moriarty, Nicholas Sauter, Peter Zwart

• Los Alamos National Laboratory

Tom Terwilliger, Li-Wei Hung

Cambridge University

 Randy Read, Airlie McCoy, Laurent Storoni, Gabor Bunkoczi, Robert Oeffner

Duke University

 Jane Richardson & David Richardson, Ian Davis, Vincent Chen, Jeff Headd, Chris Williams, Bryan Arendall, Laura Murray

Others

- Garib Murshudov & Alexi Vagin
- Kevin Cowtan, Paul Emsley, Bernhard Lohkamp
- Alexandre Urzhumtsev & Vladimir Lunin
- David Abrahams
 - PHENIX Testers & Users: James Fraser, Herb Klei, Warren Delano, William Scott, Joel Bard, Bob Nolte, Frank von Delft, Scott Classen, Ben Eisenbraun, Phil Evans, Felix Frolow, Christine Gee, Miguel Ortiz-Lombardia, Blaine Mooers, Daniil Prigozhin, Miles Pufall, Edward Snell, Eugene Valkov, Erik Vogan, Andre White, and many more

• Funding:

- NIH/NIGMS:
 - P01GM063210, P50GM062412, P01GM064692, R01GM071939
- Lawrence Berkeley Laboratory
- PHENIX Industrial Consortium

