
Ligand fitting with Coot

..and more?

Bernhard Lohkamp Karolinska Institutet

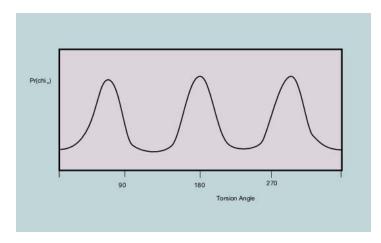
June 2011 Chicago

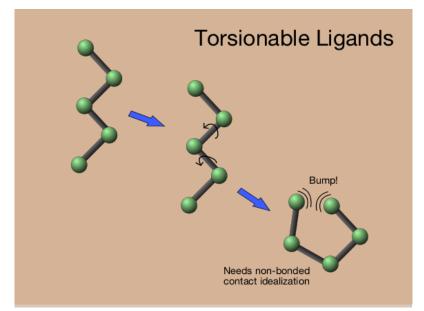
Fitting Ligands

Ligand Fitting

- c.f. Oldfield (2001) Acta Cryst. D X-LIGAND
- Somewhat different torsion search algorithm
- Build in crystal-space

REFMAC Monomer Library chem_comp_bond

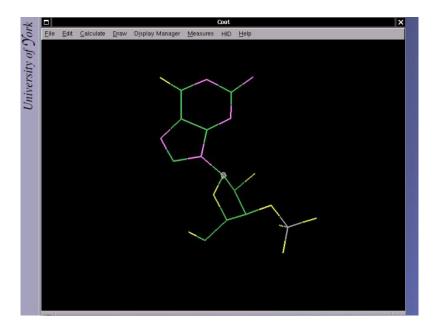

loop_

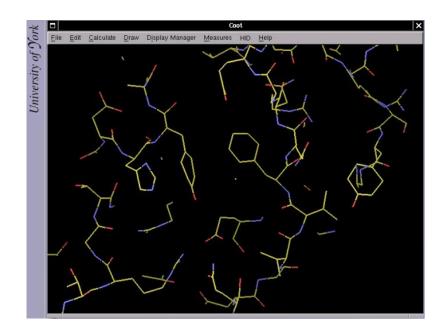

_chem_comp_bond.comp_id												
_chem_comp_bond.atom_id_1												
_chem_comp_bond.atom_id_2												
_chem_comp_bond.type												
_chem_comp_bond.value_dist												
_chem_comp_bond.value_dist_esd												
ALA	N	H	single	0.860	0.020							
ALA	N	CA	single	1.458	0.019							
ALA	CA	HA	single	0.980	0.020							
ALA	CA	CB	single	1.521	0.033							
ALA	CB	HB1	single	0.960	0.020							
ALA	CB	HB2	single	0.960	0.020							
ALA	CB	HB3	single	0.960	0.020							
ALA	CA	С	single	1.525	0.021							
ALA	С	0	double	1.231	0.020							

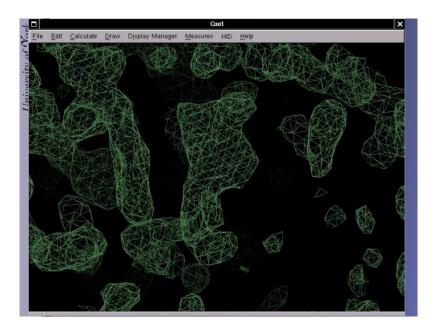
REFMAC Monomer Library chem_comp_tor

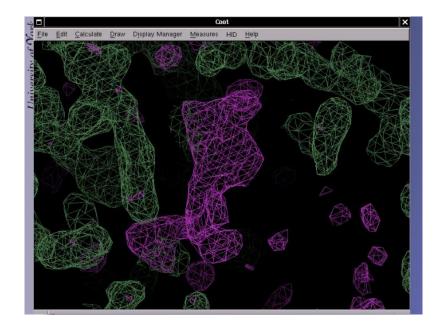
chem _chem_ _chem_ _chem_ _chem_ _chem_	_comp_t _comp_t _comp_t _comp_t _comp_t _comp_t _comp_t _comp_t	Chiź	chi1					
chem	_comp_t	or.p	erio	d				
TRP	chi1	Ν	CA	CB	CG	180.000	15.000	3
TRP	chi2	CA	СВ	CG	CD1	90.000	20.000	2

Ligand Torsionable Angle Probability from CIF file

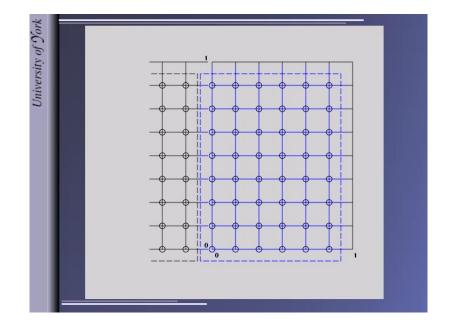


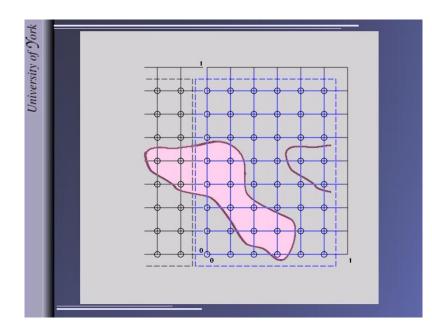

Crystal Space

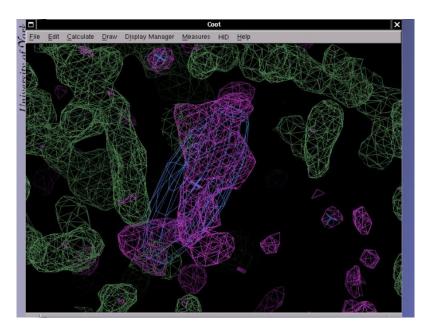

- Build in "crystal space"
 - Like real-space, but wrapped by crystal symmetry
 Like "Asteroids"
 - Assures only one real-space representation of map features
 - Build everything only once
 - No symmetry clashing
 - However, more difficult to calculate real space geometries
 -such as bonds, torsions

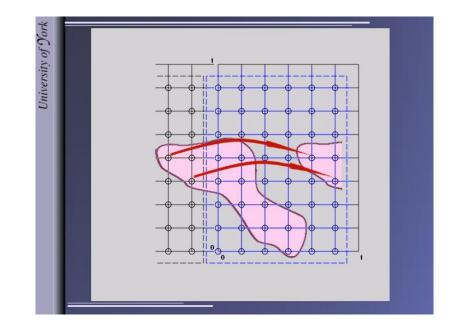

Crystal space

- Building in crystal space is good:
 - We don't need to define where the protein is and create an extended map that surrounds it
 - We don't have to worry about the relative position of the ligand and the protein
 - Unknown "BORDER" parameter
 - We find (and fit) each site exactly once
 - No symmetry problems

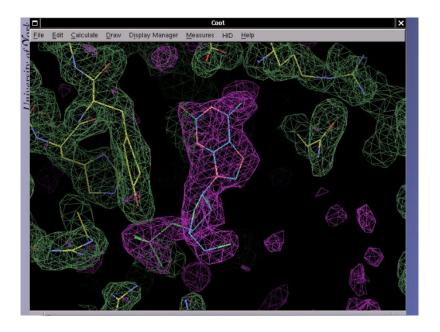






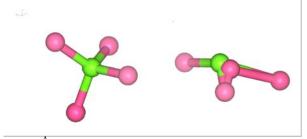

Clipper Map Mapping


- Clipper maps
 - Appear to be "infinite"
 - Density value can be queried anywhere in space



Conformation Idealization

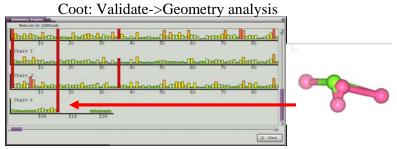
- Each conformer is passed through the "Regularization" function of Coot
 - Non-bonded terms included
- Better to have hydrogen atoms on the model
- Slows things down a good deal...
 - May not be the best method to explore conformational variability for many rotatable bonds


Ligand Overlay

- Algorithm and Code by Eugene Krissinel
- Tries to overlay different ligands/monomers by graph matching
- Useful for "database" ligands where atom names are not selected by hand
- Has been used as the basis of the function which "mutates" residues to alternative monomer types
 - e.g. phosphorylation

Ligand validation

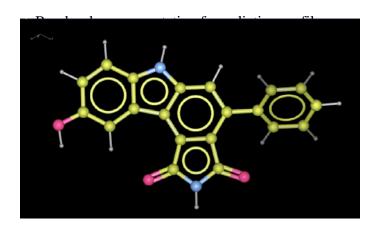
Ligand validation Why validate?


- 70.000 structures in PDB
- 11.000 'ligands' in 50.000 structures

- 1.65 A resolution
- R/Rfree 0.15/0.19

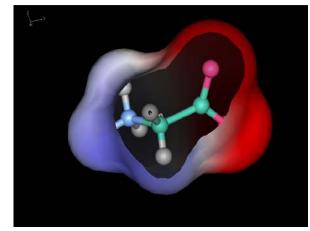
Ligand validation

- How to validate ligand geometry?
 - Compare observed structure to restraints

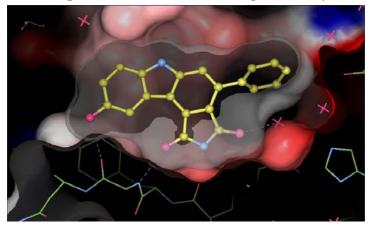

- But what if parametrization (dictionary) is wrong?

»How to validate ligand geometry?

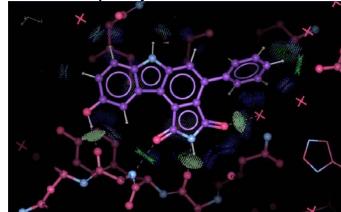
- QM
 - CPU hungry
 - In vacuo
 - Low energy \neq (?) bound ligand
- PDB (e.g. ValLigURL)
 - Good cofactor structures
 - Less useful for novel ligands
 - (occ.) questionable quality
- CSD
 - Using small molecule geometries
 - e.g. Mogul


Ligand representation

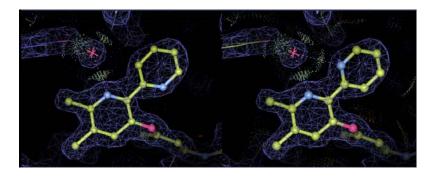
Ligand representation


Surfaces

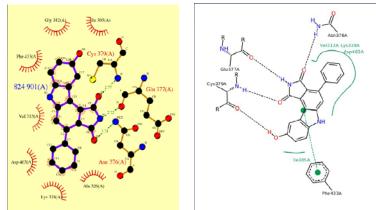
• Partial charges


Surfaces

• Transparent surfaces – surface complementarity


Binding mode analysis

- Binding site highlighting
- Isolated molprobity dots

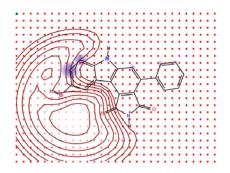

Binding mode analysis

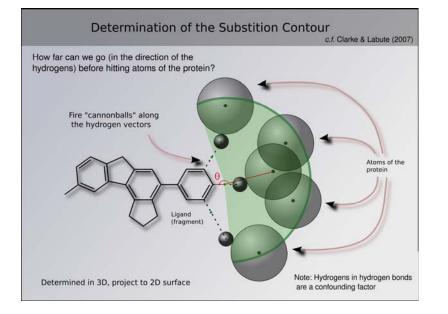
- Binding site highlighting
- Isolated molprobity dots

Ligand environment

• 2D ligand pocket layout (ligplot, poseview)

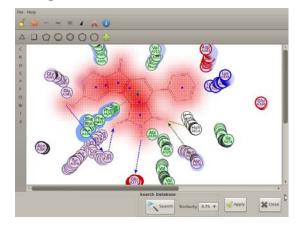
Ligand environment layout

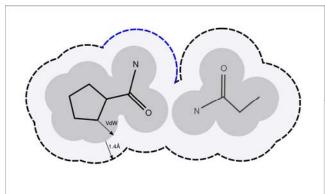

- Binding pocket residues
- Interactions
- Substitution contour
- Solvent accessible halos

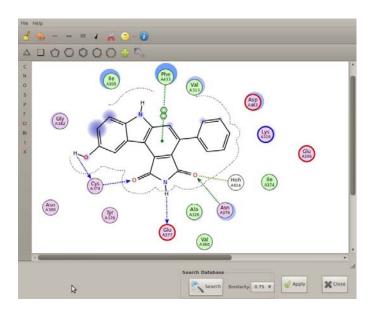

Ligand environment layout

- Considerations
 - 2D placement and distances should reflect 3D metrics
 - As much as possible
 - Residues should not overlap the ligand
 - $\mbox{Residues}$ should not overlap each other
 - H-bonded residues should be close to atoms to which they are bonded
 - Etc.
 - c.f. Clark & Labute (2007); poseview

Ligand environment layout


• Initial residue placement


Ligand environment layout


• Residue position minimization

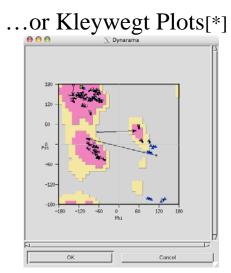
Solvent exposure calculation

- Identification of solvent accessible atoms
- Different from substitution contour

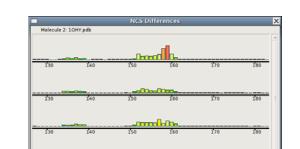
Handling NCS...

What is Non-Crystallographic Symmetry?

- 2 or more copies of a molecule in the unit cell not related by crystallographic symmetry
- Crystallographic copies of molecules are (of course) treated as if they were exactly the same across the unit cell and indeed across the whole crystal
- Non-crystallographically related molecules provide different representations of the same molecule
 - This can be useful for model-building
 - But difficult to use in practice

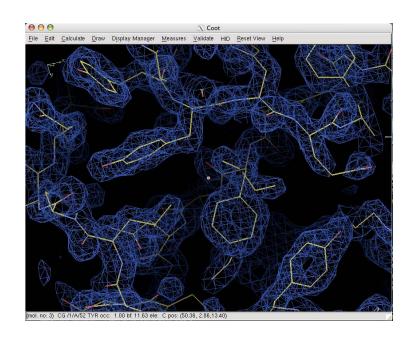

Handling NCS

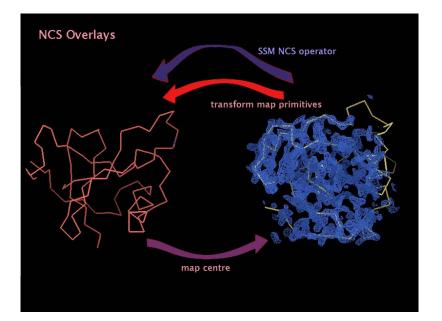
- What are the Problems?
- Strict NCS:
 - NCS should appear like crystallographic symmetry does [exact copies]
- Non-Strict NCS:
 - Molecules are different
 - How to cope with differences, but minimize unnecessary rebuilding?

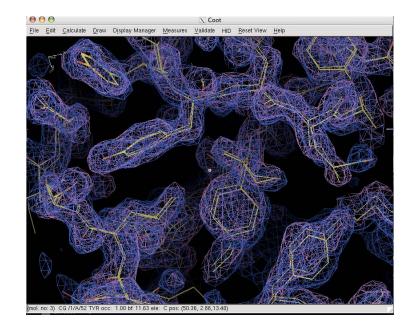

Handling NCS

Typical Scenario:

- I have done an LSQ overlap of my NCSrelated molecules and from the graph, have seen significant deviations in the positions of some side-chains.
- Why are they different?

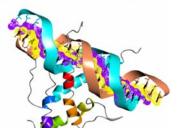



[*] Named by George Sheldrick



X Close

... or new NCS Differences graph


NCS Model-modification Tools

- Automatic detection of NCS
 - And their operators
- Copy Master NCS molecule to others
 - Applies NCS transformation
- Copy NCS Master residue-range
- Change NCS Master chain
- NCS Skipping

CCP4MG

- New CCP4MG (v. 2.5)
- Easy to use
- Picture wizard
- Annotations
- PISA interface
- Movies
- Online updates

http://www.ysbl.york.ac.uk/~ccp4mg/

Acknowledgements

http://www.biop.ox.ac.uk/coot/

• Paul Emsley

• Keith Wilson

or

Kevin Cowtan Eleanor Dodson

- Google: Coot
- or for WinCoot

http://www.ysbl.ac.uk/~lohkamp/coot

- Libraries, dictionaries
 - Alexei Vagin, Eugene Krissinel, Stuart McNicholas
 - Dunbrack, Richardsons
- Coot Builders and Testers
 - William Scott, Ezra Peisach
 - York YSBL, Dundee, Glasgow (early adopters)
 - Coot Mailing List subscribers