

MSDpisa Tutorial Sanchayita Sen, Ph.D. Macromolecular Structural Database@EBI

PISA (Protein Interfaces, Surfaces and Assemblies) is a web based interactive service offered by **MSD** to investigate stability of formation of macromolecular complexes (protein, DNA/RNA and ligand).

Stability of a macromolecular complex is governed by the following physicochemical properties:

- free energy of formation
- solvation energy gain
- interface area
- hydrogen bonds and saltbridges across the interface
- hydrophobic specificity

Go to the start page for PISA @ <u>http://www.ebi.ac.uk/msd-srv/prot_int/cgi-bin/piserver</u> Type the ID code 1N2C where it asks for PDB entry

Submission Form	for Structure Analysis Database Searches
ex	planation of input
Protein structure to be	e examined:
PDB entry (1n2c C Coordinate file Wait for page to update afte	yiewin Jmol 🔄 r you change the entry
8 aminoacid chains ar	nd 22 ligands in ASU.
Most probable asserti	Diy. <u>8-mer</u>
Process ligands: F	A 및 이 에 CEM 및 CLE 및 CA
F	FS4 로 ADP 로 MG 로 ALF
Processing mode:	uto 💌
interfaces	monomers assemblies

As soon as the file gets uploaded to the server, it will give you preliminary information regarding the PDB entry (number of proteins chains and bound ligands).

The entry 1n2c has 8 protein chains and 22 ligands.

This work is licensed under the Creative Commons Attribution-Share Alike 3.0 License. To view a copy of this license, visit <u>http://creativecommons.org/licenses/by-sa/3.0/</u> or send a letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.

EMBL-EBI

The most probable assembly is stated as an 8-mer.

[If you want to know some more details about this PDB entry (e.g. Name of the protein, origin etc.), then go to the MSD homepage (<u>http://www.ebi.ac.uk/msd/index.html</u>)

and type the ID code 1n2c to view the atlas page for this entry. The atlas page for this entry gives us information that it is a nitrogenase complex structure stabilized by ADP-tetrafluoroaluminate (title). There are two different proteins, 1)NITROGENASE MOLYBDENUM-IRON PROTEIN (Chains A, B, C and D) and 2)NITROGENASE IRON PROTEIN (chains E, F, G, H)].

You can click on the view button highlighted in blue to view the loaded PDB entry

There are three buttons highlighted in green at the bottom of the submission page – **interfaces**, **monomers** and **assemblies**. Each of them provide structural information

related to the protein of interest (energy of association, solvation energy, buried surface area, H-bonds and saltbridges etc.).

The Monomers:

Let us first start with the different monomers present in the PDB entry.

If you click on the monomers button, you get the following information about the corresponding PDB entry.

	##			1	Structure			Surfa		
Id	NN	«»	Range	Class	N _{at}	Nres	^s N _{at}	^s N _{res}	Area, Å ²	∆G, kcal/M
- 5	1	6	A	Protein	3793	(478)	1886	416	19473.3	-441.1
1	2	C	<u>C</u>	Protein	3793	478	1876	416	19438.5	-441.3
				Average:	3793	478	1881	416	19455.9	-441.2
	3	C	B	Protein	4170	522	2233	465	23880.1	-498.8
2	4	C	D	Protein	4170	522	2240	466	23907.4	-498.7
				Average:	4170	522	2236	465	23893.8	-498.7
- 5	5	C	E	Protein	2066	274	1067	235	11703.4	-268.0
3	6	C	E	Protein	2066	274	1055	237	11702.7	-268.2
	7	C	G	Protein	2066	274	1064	237	11722.0	-268.0
	8	C	Ĥ	Protein	2066	274	1064	237	11714.4	-268.0
		1.1.1.2	0.000	Average:	2066	274	1062	236	11710.6	-268.1
4	9	C	[HCA]A:494	Ligand	14	1	13	1	351.3	
	10	C	IHCAIC:494	Ligand	14	1	13	1	351.6	
				Average:	14	1	13	1	351.5	
	11	C	[CFM]A:496	Ligand	17	1	17	1	490.6	-
5	12	C	[CFM]C:496	Ligand	17	1	17	1	489.6	
3 4 5 6 7				Average:	17	1	17	1	490.1	-
-2	13	C	[CLF]A:498	Ligand	15	1	15	1	454.0	
6	14	C	[CLF]C:498	Ligand	15	1	15	1	453.9	
			18	Average:	15	1	15	1	453.9	
	15	C	[CA]A:499	Ligand	1	1	1	1	84.9	
7	16	C	[CA]C:499	Ligand	1	1	1	1	84.9	
		1.00000		Average:	1	1	1	1	84.9	
2	17	C	[FS4]E:290	Ligand	8	1	8	1	304.4	
8	18	C	[FS4]G:290	Ligand	8	1	8	1	304.4	

For chain A, which represents the Molybdenum-iron protein, there are total 478 amino acids in the protein chain and 416 of them are surface exposed residues.

The solvent accessible area for this protein 19473.3 Å² and the solvation energy for folding (ΔG) is -441.1 Kcal/M.

Similarly for chain E which represents the iron protein, there are total 274 amino acids and out of those 235 amino acids are present on the surface of the protein. The solvent accessible surface area 11703.4Å² and energy of solvation (ΔG) for this structure is - 268 kcal/M.

You can also view the individual protein chain by click on the letter (A, B, C, D, E, F, G, H) corresponding to the protein chain.

Identifying the amino acid residues involved in interaction:

Click on the link which is represented as a number in the results page. In our example it is 1 for chain A and 5 for chain E.

Click on link 1 for chain A. This will take you to the following page, where you get residue by residue solvent accessibility information.

##	Monomer A	101 82				
##	Monomer A	ASA, A	<u>2</u> ¤	<u>7</u> ¤	10¤	
1	A:MET 4	82.86	0.00	0.00	0.00	
2	A:SER 5	42.94	0.00	0.00	0.00	
3	A:ARG 6	68.41	0.00	0.00	0.00	
4	A:GLU 7	111.20	0.00	0.00	0.00	
5	A:GLU 8	94.55	0.00	0.00	0.00	
6	A:VAL 9	3.52	0.00	0.00	0.00	
7	A:GLU 10	80.74	0.00	0.00	0.00	
8	A:SER 11	55.73	0.00	0.00	0.00	
9	A:LEU 12	9.52	0.00	0.00	0.00	
10	A:ILE 13	5.36	0.00	0.00	0.00	
11	A:GLN 14	81.73	0.00	0.00	0.00	
12	A:GLU 15	94.21	0.00	0.00	0.00	
13	A:VAL 16	5.02	0.00	0.00	0.00	
14	A:LEU 17	2.01	0.00	0.00	0.00	
15	A:GLU 18	133.14	0.00	0.00	0.00	
16	A:VAL 19	86.65	47.95	0.00	0.00	
17	A:TYR 20	15.29	6.45	0.00	0.00	
18	A: PRO 21	95.12	68.33	8.08	0.00	
19	A:GLU 22	113.74	0.00	0.00	0.00	
20	A:LYS 23	165.23	41.89	0.00	0.00	
21	A:ALA 24	11.01	10.86	0.00	0.00	
22	A:ARG 25	73.71	0.00	0.00	0.00	
23	A:LYS 26	121.28	0.00	0.00	0.00	
24	A:ASP 27	26.03	0.00	0.00	0.00	
25	A:ARG 28	3.87	0.00	0.00	0.00	
26	A:ASN 29	44.60	0.00	0.00	0.00	
27	A:LYS 30	84.90	0.00	0.00	0.00	
28	A:HIS 31	2.79	0.00	0.00	0.00	
29	A:LEU 32	1.97	0.00	0.00	0.00	
30	A:ALA 33	0.33	0.00	0.00	0.00	
31	A:VAL 34	6.26	0.00	0.00	0.00	
32	A:ASN 35	0.00	0.00	0.00	0.00	
33	A:ASP 36	44.68	0.00	0.00	0.00	

All the residues are colour coded depending on their solvent accessibility. The solvent exposed residues are coloured grey, the interface residues are coloured blue and the buried residues are coloured black.

The Interfaces:

Let us now click at the interface button for this PDB entry 1n2c.

The results page will give us detailed information regarding the interface between two protein chains present in the complex structure.

The second s	이 지수는 것이 같은 것이 없는 것을 잘 하는 것을 했다.
Launa	Intortococ
FUUIIU	menaces

	##		Stru	cture	1			Interface	مام					N _{anna} .
ld	NN	«»	Range	^I N _{at}	^I N _{res}	×	Range	area, Å ²	kcal/M	P-value	NHB	N _{SB}	NDS	CSS
	1	6	D	469	119	<u>\</u>	C	4367.5	-54.3	0.011	56	18	0	0.551
1	2	C	В	474	120	0	A	4360.2	-54.4	0.010	55	17	0	0.551
				1			1	4363.9	-54.3	0.011	56	18	0	0.551
2	3	C	D	322	77	♦	В	2872.0	-21.6	0.430	46	32	0	0.724
	4	C	Н	251	66	0	G	2335.1	-12.4	0.400	31	15	0	0.302
3	5	C	F	248	66	0	E	2321.0	-12.4	0.398	31	14	0	0.302
	_						k	2328.0	-12.4	0.399	31	15	0	0.302
	6	C	В	140	37	0	С	1288.3	-15.5	0.177	17	6	0	0.306
4	7	C	D	137	36	\Diamond	A	1283.3	-15.3	0.181	16	7	0	0.306
								1285.8	-15.4	0.179	17	7	0	0.306
	8	C	G	69	19	\diamond	D	554.0	1.5	0.724	5	3	0	0.004
5	9	C	E	71	19	0	В	549.2	1.4	0.703	5	4	0	0.004
		<u>v v</u>					5	551.6	1.4	0.713	5	4	0	0.004
	10	C	F	61	19	♦	A	514.0	-1.5	0.599	4	3	0	0.027
6	11	C	Н	60	19	0	С	506.8	-1.8	0.576	4	5	0	0.027
		· · · · ·				11.11.11.1		510.4	-1.7	0.588	4	4	0	0.027
	12	C	F	52	16	<u> </u>	В	417.6	-7.8	0.088	4	2	0	0.030
7	13	C	Н	51	17	0	D	405.0	-7.5	0.095	5	1	0	0.030
							U. 2003	411.3	-7.6	0.091	5	2	0	0.030
	14	C	G	49	15	<u> </u>	C	392.9	-6.7	0.112	4	2	0	0.056
8	15	C	E	48	15	\Diamond	A	390.0	-6.7	0.109	4	2	0	0.056

In the above example, between chains C and D there are 18 saltbridges and 56 Hbonding interactions.

If you click on the link highlighted in red, you can visualize the interface region between the protein chains.

The interface region is highlighted in red and green in the above picture.

For information regarding the specific residues involved in complex formation click on the link under column name NN (highlighted in green in the above figure).

łyd	rogen bonds			Salt	bridges				
##	Structure 1	Dist. [Å]	Structure 2	##	Structure	1	Dist. [Å]	Stru	cture 2
1	D:ASN 137[ND2]	2.90	C:PRO 54[0]	1	D:LYS 68[NZ]	3.02	C:ASP :	117[OD!
2	D:TYR 142[OH]	2.81	C:LEU 56[0]	2	D:LYS 68[NZ]	2.90	C:ASP :	17[OD2
3	D:TYR 142[OH]	3.81	C:MET 57[0]	3	D:HIS 396[NE2]	3.80	C:ASP :	17[OD2
4	D:ARG 100[NH1]	3.90	C:THR 58[0]	4	D:LYS 27[NZ]	2.90	C:GLU 3	261[OE!
5	D:GLN 93[NE2]	3.24	C:GL¥ 61[0]	5	D:LYS 27[NZ]	2.98	C:GLU 3	261[OE2
6	D:TYR 447[OH]	3.30	C:GLN 90[0]	6	D:SER 2[N]	3.41	C:ASP	454[OD!
7	D:CYS 70[SG]	2.79	C:TYR 91[OH]	7	D:SER 2[N]	3.36	C:ASP	454[OD2
8	D:CYS 70[N]	3.21	C:TYR 91[OH]	8	D:GLU 32[OE1]	2.90	C:LYS	76[NZ
9	D:LYS 34[NZ]	3.73	C:ILE 101[0]	9	D:GLU 32[OE2]	3.01	C:LYS	76[NZ
10	D:ARG 453[NH2]	3.46	C:THR 104[0]	10	D:GLU 33[OE1]	3.16	C:ARG	210[NH2
11	D:ASN 65[N]	2.83	C:ASN 113[0]	11	D:GLU 33[OE1]	3.53	C:LYS :	46[NZ
12	D:THR 63[N]	2.99	C:THR 115[0]	12	D:GLU 33[OE2]	2.99	C:ARG	210[NH!
13	D:LYS 68[NZ]	3.02	C:ASP 117[OD1]	13	D:GLU 33[OE2]	3.20	C:ARG :	210[NH2
14	D:LYS 68[NZ]	2.90	C:ASP 117[OD2]	14	D:GLU 109[OE1]	2.71	C:LYS	433[NZ
15	D:HIS 396[NE2]	3.80	C:ASP 117[OD2]	15	D:GLU 109[OE2]	3.37	C:LYS	433[NZ
16	D:LEU 62[N]	2.95	C:GLU 137[OE1]	16	D:ASP 121[OD1]	3.49	C:LYS	51[NZ
17	D:ALA 61[N]	3.23	C:GLU 137[OE1]	17	D:ASP 133[OD1]	3.93	C:LYS	23[NZ
18	D:ALA 61[N]	3.10	C:GLU 137[OE2]	18	D:ASP 133[OD2]	3.01	C:LYS	23[NZ
19	D:GLU 60[N]	2.93	C:GLU 137[OE2]						
20	D:TYR 52[OH]	3.02	C:LEU 141[0]	Dist	ultide bonds				
21	D:SER 92[OG]	3.18	C:CYS 154[SG]			Sectores			1
22	D:GLU 120[N]	3.04	C:PHE 186[0]	##	Structure 1	Dist.	[A] Str	ucture 2	
23	D:GLN 93[NE2]	2.79	C:VAL 189[0]						
24	D:LYS 27[NZ]	2.90	C:GLU 261[OE1]		No disu	lfide bor	nds found		
25	D:LYS 27[NZ]	2.98	C:GLU 261[OE2]						
26	D:SER 2[N]	3.85	C:TYR 331[OH]	Cov	alent bonds				
27	D:GLN 3[N]	3.14	C:GLU 334[OE1]	_					-1
28	D:SER 2[OG]	3.17	C:GLU 334[OE2]	##	Structure 1	Dist	[Å] Str	ucture 2	
29	D:ARG 100[NH2]	3.70	C:LYS 426[0]	ππ	ouroure I	Dist	ung ou	aoturo 2	
30	D:ASP 266[N]	3.70	C:LYS 433[O]		No cova	alent hor	nds found		
31	D:GLN 268[N]	3.03	C:LYS 433[0]		110 0000	alorit 001	nao iouriu		

In addition to the saltbridge and H-bonding interactions between the residues, the results page also provides information about Buried and accessible surface areas and solvation energies of the interfacing residues.

Inter Displ	nterfacing residues (not a contact table) Display level: Residues Inaccessible residues Solvent-accessible residues										
##	Structu	ure 1	HSDC	ASA	BSA	Aica, /	∆ ⁱ G				
1	D:SER	2	HS	109.18	72.80		-0.13				
2	D:GLN	3	H	79.30	71.64		0.21				
3	D:GLN	4		93.12	0.00		0.00				
4	D:VAL	5		129.40	89.67		1.21				
5	D:ASP	6		107.81	10.57		0.14				
6	D:LYS	7		154.14	0.00		-0.00				
7	D:ILE	8	H	123.53	101.65		1.34				
8	D:LYS	9		54.02	0.74		-0.01				
9	D:ALA	10		69.36	45.43		0.69				
10	D:SER	11		72.64	52.55		0.17				
11	D:TYR	12		170.20	0.00		-0.00				
12	D:PRO	13		53.69	0.00		-0.00				
13	D:LEU	14		21.83	21.83		0.35				
14	D:PHE	15		93.51	71.76		1.15				
15	D:LEU	16		94.22	0.00		0.00				
16	D:ASP	17		38.02	0.00		-0.00				
17	D:GLN	18		118.45	0.00		-0.00				
18	D:ASP	19		92.27	28.19		-0.29				
19	D:TYR	20	H	53.43	53.43		-0.01				
20	D:LYS :	21		102.43	0.00		0.00				
21	D:ASP :	22		60.06	0.00		0.00				

EMBL-EBI

All the residues in this table are colour coded depending on their solvent accessibility (grey-surface exposed, black – buried, light blue – interfacing residues). The color red represents the residues which are involved in Hydrogen/Disulphide bond, Salt bridge or Covalent interactions.

Assemblies:

In order to get the quaternary structure information for 1N2C click on the "assemblies" button.

PQS	PQS set mm Formula		Formula	O		01-1-1-	Surface	Buried	∧G ^{int}	AGdiss
NN	«»	Size	Formula	Composition	Ia	Stable	area, sq. Å	area, sq. Å	kcal/M	kcal/M
1	¢	8	$\substack{A_2B_2C_4d_2e_2f_2\\g_2h_2i_4j_4k_4}$	ACBDEFGHIHCA12[CEM]2[CLE12[CA12[FS4]2 	1	yes	84866.0	55490.3	-450.7	28.1
	c	4	ABC ₂ defghi ₂ j ₂ k ₂	<u>CBGH[HCA][CFM][CLF][CA][FS4][ADP]</u> <u>IMG]₂[ALF]₂</u>	2	yes	56472.6	13690.3	-131.9	1.2
2	с	4	ABC2defghi2j2k2	ADEFIHCAI[CFM][CLF][CAI]FS4][ADP]2	2	yes	56529.3	13664.5	-131.6	0.5
	c	4	$A_2B_2c_2d_2e_2f_2$	ACBD[HCA]2[CFM]2[CLF]2[CA]2	3	yes	56944.1	32516.1	-299.1	91.2
3	С	2	A2bc2d2e2	GHIFS4][ADP]2[MG]2[ALF]2	4	yes	17843.1	7621.0	-55.9	25.3
	С	2	A2bc2d2e2	EF[FS4][ADP]2[MG]2[ALF]2	4	yes	17839.8	7592.5	-56.0	25.3
	c	3	AB2cdefg2h2i2	CGH[HCA][CFM][CLF][FS4][ADP] ₂ [MG] ₂ [ALF] ₂	5	yes	35180.3	11017.5	-108.5	1.9
4	c	3	AB2cdefg2h2i2	AEF[HCA][CFM][CLF][FS4][ADP]2[MG]2 [ALF]2	5	yes	35200.0	11001.4	-108.2	1.2
	С	2	A2b2	BD[CA]2	<u>6</u>	yes	42021.6	5935.8	-39.4	39.4
	C	2	A_bc_d_e_	GH[FS4][ADP]_[MG]_[ALF]_	4	yes	17843.1	7621.0	-55.9	25.3

For this entry the proposed quaternary structure by **PISA** is a hetero-octamer which is already present as a stable assembly in the PDB file. In the **assemblies** result page **PISA** also gives information about the buried and accessible surface area, and free energy of solvation gained upon the formation of the entire complex structures.

Therefore using PISA you can get valuable information about the type of complexes that can be formed based on chemical stability and crystal contacts. The residue by residue information provided by PISA can be used to identify the amino acids that are crucial to the formation of stable complexes which can be biologically relevant.