PHENIX Wizards and Tools

PHENIX Wizards

•AutoSol Wizard: Structure solution (MIR/MAD/SAD) with HYSS/Phaser/Solve/Resolve

•AutoBuild Wizard: Iterative density modification, modelbuilding and refinement with Resolve/phenix.refine/Elbow; model rebuilding in place; touch-up of model; simple OMIT; SA-OMIT; Iterative-build OMIT; OMIT around atoms in a PDB file; protein, RNA, DNA model-building

•LigandFit Wizard: automated fitting of flexible ligands

•AutoMR Wizard: Phaser molecular replacement followed by automatic rebuilding

Determining a SAD structure with **PHENIX**

•Solve the structure: phenix.autosol sad.sca 12 se

•AutoBuild a model and improve phases: phenix.autobuild after_autosol=true

•Find ligands: phenix.ligandfit sad.sca model=partial.pdb ligand=ATP

 Refine the model carefully: phenix.refine exptl_fobs_freeR_flags.mtz \ overall_best.pdb #and many more commands

Why automate structure determination?

Automation...

makes straightforward cases accessible to a wider group of structural biologists

makes difficult cases more feasible for experts

can speed up the process

can help reduce errors

Automation also allows you to...

try more possibilities

estimate uncertainties

Requirements for automation of structure determination of macromolecules by X-ray crystallography

- (1) Software carrying out individual steps
- (2) Seamless connections between steps
- (3) A way to decide what is good
- (4) Strategies for structure determination and decisionmaking

Why we need good measures of the quality of an electrondensity map:

Which solution is best?

Are we on the right track?

If map is good: It is easy

Why we need good measures of the quality of an electrondensity map:

Which solution is best?

Are we on the right track?

If map is good: It is easy

Histogram of electron density values has a positive "skew"

Evaluating electron density maps

Basis	Good map	Random map				
Skew of density (Podjarny, 1977)	Highly skewed (very positive at positions of atoms, zero elsewhere)	Gaussian histogram				
Connectivity of regions of high density (Baker, Krukowski, & Agard, 1993)	A few connected regions can trace entire molecule	Many very short connected regions				
Correlation of local rms densities (Terwilliger, 1999)	Neighboring regions in map have similar rms densities	Map has uniform rms density				
R-factor in 1 st cycle of density modification (Cowtan, 1996)	Low R-factor	High R-factor				

Which scoring criteria best reflect the quality of a map?

Create real maps

Score the maps with each criteria

Compare the scores with the actual quality of the maps

Creating real maps

247 MAD, SAD, MIR datasets with final model available (PHENIX library and JCSG publicly-available data)

Run AutoSol Wizard on each dataset.

Calculate maps for each solution considered (opposing hands, additional sites, including various derivatives for MIR)

Score maps based on each criteria

Calculate map correlation coefficient (CC) to model map (no density modification, shift origin if necessary)

Model map 1VQB, 2.6 Å, SG *C*2

SOLVE MAD map II CC=0.62

Inverse-hand map CC=0.55

Correlation of local RMS density (Solvent next to solvent, protein next to protein)

How accurate are estimates of map quality?

Estimated quality

Estimated map quality in practice Evaluating solutions to a 2-wavelength MAD experiment (JCSG Tm3681, 1VPM, SeMet 1.6 Å data)

Data for HYSS	Sites	Estimated CC ± 2SD	Actual CC
Peak	12	0.73 ± 0.04	0.72 ←
Peak (inverse hand)	12	0.11 ± 0.43	0.04
FA	12	0.73 ± 0.03	0.72
F _A (inverse)	12	0.11 ± 0.42	0.04
Sites from diff Fourier	9	0.70 ± 0.17	0.69

What to do next: Follow up on all the solutions that MIGHT be the best (within 2 SD of the top)

Statistical density modification (RESOLVE)

•*Principle: phase probability information from probability of the map and from experiment:*

• $P(\phi) = P_{map \ probability}(\phi) P_{experiment}(\phi)$

• "Phases that lead to a believable map are more probable than those that do not"

A believable map is a map that has...
a relatively flat solvent region
NCS (if appropriate)
A distribution of densities like those of model proteins

•*Method:*

-calculate how map probability varies with electron density ρ

•deduce how map probability varies with phase ϕ •combine with experimental phase information

Map probability phasing: Getting a new probability distribution for each phase given estimates of all others

- 1. Identify expected features of map (flat far from center)
 - 2. Calculate map with current estimates of all structure factors except one (k)

- 3. Test all possible phases ϕ for structure factor k (for each phase, calculate new map including k)
- Probability of phase φ estimated from agreement of map with expectations
 - 5. Phase probability of reflection k from map is *independent* of starting phase probability because reflection k is omitted from the map

A function that is (relatively) flat far from the origin

Function calculated from estimates of all structure factors but one (k)

Test each possible phase of structure factor k. $P(\phi)$ is high for phase that leads to flat region

A map-probability function – allowing different weighting of information from different parts of the map

Log-probability of the map is sum over all points in map of local log-probability

$$LL^{MAP}(\{\mathbf{F_h}\}) \approx \frac{N_{\mathbf{REF}}}{V} \int_{\mathbf{V}} LL(\rho(\mathbf{x}, \{\mathbf{F_h}\})) d^3\mathbf{x}$$

A map with a flat (blank) solvent region is a likely map

Local log-probability is believability of the value of electron density (p(x)) found at this point

 $LL(\rho(\mathbf{x}, \{\mathbf{F}_{\mathbf{h}}\})) = \ln[p(\rho(\mathbf{x})|PROT)p_{PROT}(\mathbf{x}) + p(\rho(\mathbf{x})|SOLV)p_{SOLV}(\mathbf{x})]$

If the point is in the PROTEIN region, most values of electron density $(\rho(x))$ are believable

If the point is in the SOLVENT region, only values of electron density near zero are believable

Rapid building of models for regions containing regular secondary-structure

Helices:

Identification: rods of density at low resolution

Strands:

Identification: β structure as nearly-parallel pairs of tubes

Any protein chains (trace_chain):

Identification: $C\alpha$ positions consistent with density and geometry of protein chains

RNA/DNA:

Identification: match of density to averaged A or B-form template

Model α -helix; 3 Å map

Model α -helix; 7 Å map

Find points along tubes of density in 7 Å map +

Trace along tubes of density in 7 Å map

Trace main-chain with ideal helix, allowing curvature

4 Å radius, 5.4 Å /turn ideal helix offset +1 Å along x 4 Å radius, 5.4 Å /turn ideal helix offset -1 Å along x

Choose best-fitting helices; link together if necessary

Comparison with model helix

A real case: 1T5S SAD map (3.1 Å)

AutoSol – fully automatic tests with structure library (MAD datasets, HYSS search, SOLVE/RESOLVE phases)

AutoSol – fully automatic tests with structure library (MAD datasets, HYSS search, Phaser phases)

AutoSol – fully automatic tests with structure library (MIR datasets, HYSS search, SOLVE/RESOLVE phases)

RESOLVE model-building at moderate resolution

•FFT-based identification of helices and strands

- •Extension with tripeptide libraries
- Probabilistic sequence alignment
- •Automatic molecular assembly

Initial model-building – strand fragments

Chain extension (result: many overlapping fragments)

Main-chain as a series of fragments (choosing the best fragment at each location)

Side-chain template matching to identify sequence alignment to map (IF5A data) Relative probability for each amino acid at each position (Correct amino acids in bold)

#	G	Α	S	V	I	L	Μ	С	F	Y	К	R	W	Η	Е	D	Q	Ν	Ρ	Т
1	6	5	4	18	18	6	1	1	1	2	6	2	2	1	9	6	1	0	1	4
2	4	11	14	37	5	2	0	2	0	0	2	3	0	0	1	2	0	0	0	6
3	11	23	5	12	5	3	2	0	1	3	7	3	1	0	5	3	2	0	2	2
4	7	9	6	16	8	5	2	0	1	3	8	4	1	0	7	6	2	0	3	4
5	31	7	3	7	4	2	1	0	1	3	5	4	1	0	6	2	2	0	11	1
6	1	3	3	41	14	8	0	0	0	0	2	1	0	0	2	4	0	0	1	9
7	0	0	0	0	0	0	0	0	15	63	1	0	17	1	0	0	0	0	0	0
8	2	3	6	23	10	6	2	1	0	1	4	3	0	0	5	16	1	0	1	6
9	96	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Addition of side-chains to fixed main-chain positions

Iterative density modification, model-building and refinement with the PHENIX AutoBuild Wizard

AutoBuild – tests with structure library Fully automated iterative model-building, final R/Rfree

AutoBuild – tests with structure library Final Rfree with one-good-model vs standard AutoBuild

What can you do with automated procedures for structure solution and model-building?

If a task is modular and automated...

you can run it many times

...checking different space groups, datasets to use

...checking if your model is biasing your map

...checking if you always get the same model

Iterative-Build OMIT procedure

2mFo-DFc omit map

After building outside OMIT region 10 cycles

1HP7 molecular replacement with 1AS4 R/Rfree after initial refinement: 0.41/0.48

Multiple-model representation of uncertainties

20 models built for 1CQP, no waters, Dmin=2.6 A R=0.19-0.20; Rfree=0.26-0.27

The variation among models is a lower bound on their uncertainty

What else can you do with automated procedures for structure solution and model-building?

If a task is modular and automated...

you can run it focusing on different parts of the structure

...build the RNA and then the protein

...build the helices in a low resolution map

... use cross-crystal averaging in density modification

...build a protein model and then add ligands

Finding helices Ca²⁺ ATPase SAD map at 3.1 Å. Data courtesy of P. Nissen

Statistical density modification with cross-crystal averaging Cell receptor at 3.5/3.7 Å. Data courtesy of J. Zhu

Crystal 1 (4 copies)

Crystal 2 (2 copies)

RESOLVE density modification

PHENIX Multi-crystal averaging

Automated fitting of flexible ligands

phenix.find_all_ligands - 1J4R (3 molecules of FKB12)

Site 1

Site 3

The future: many hard problems remain in macromolecular crystallography

- Automatically identifying and building all ligands, metals, waters
- **Building multiple conformers**
- **Building poorly-defined regions**
- Building complexes of protein and nucleic acid
- **Representation of uncertainties in models**
- Choosing optimal data (multiple crystals, multiple soaks) to use
- Automatic analysis of radiation damage
- **Optimal structure solution in the presence of twinning**
- ...and many more

PHENIX AT ARGONNE CCP4 WORKSHOP

- Paul AdamsTom Terwilliger
- •www.phenix-online.org
- •phenix.doc for help
- phenix.autosol, phenix.autobuild phenix.refine ...

	The PHENIX project							
Computational <i>Paul Adams</i> , Nigel Moria	BNL) wart, ine							
Los Alamos Nat <i>Tom Terwilli</i> g	ional Lab (LANL) <i>ger</i> , Li-Wei Hung	• Los Alamos						
Cambridge Univ <i>Randy Read</i> , Rob Oeffner	/ersity Airlie McCoy, Gabor Bunkoczi,	UNIVERSITY OF CAMBRIDGE						
Duke University <i>Jane Richardson, David Richardson,</i> Jeff Headd, Vincent Chen								
Texas A&M Univ Tom loerger,	/ersity Jim Sacchettini	Ам						

http://www.phenix-online.org