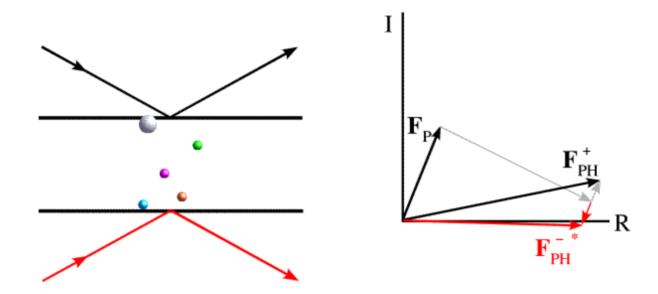
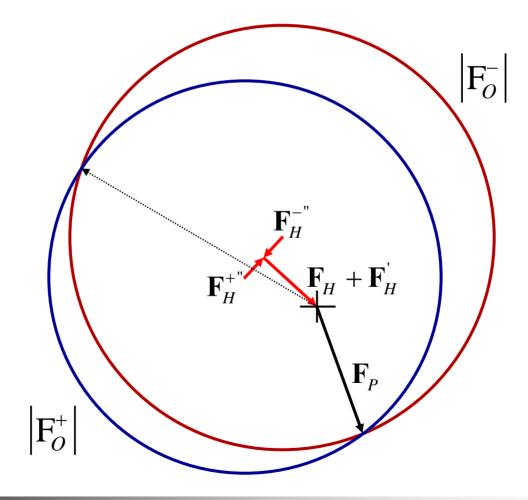
Using SAD data in *Phaser*

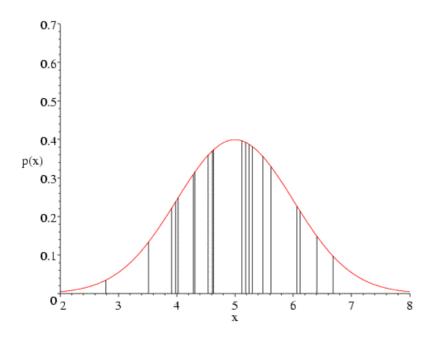

Phasing and extended model completion


R J Read, Department of Haematology Cambridge Institute for Medical Research

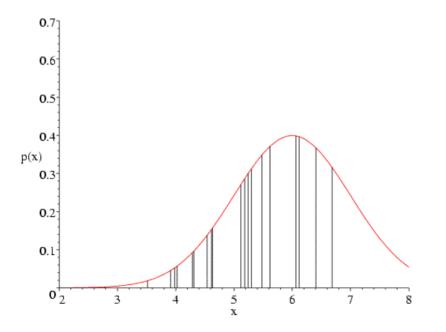
Diffraction with anomalous scatterers

SAD: single-wavelength anomalous diffraction

Harker construction for SAD phasing

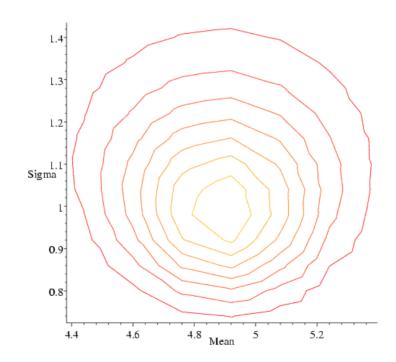

Principle of maximum likelihood

- How consistent is the model with the data?
- What is the probability that the data would be measured if the model were correct?


L = p(data; model)

 Optimise model by adjusting parameters in probability distribution


• Generate data randomly from Gaussian distribution with μ =5, σ =1


With incorrect mean, some points become improbable

With incorrect standard deviation, some points become improbable

Plot likelihood as function of mean and sigma

Least squares and likelihood

- Most experiments have multiple sources of error: Gaussian error in observations
 - Central Limit Theorem
- Likelihood for Gaussians = least squares

Least-squares line fitting

Why not least squares in crystallography?

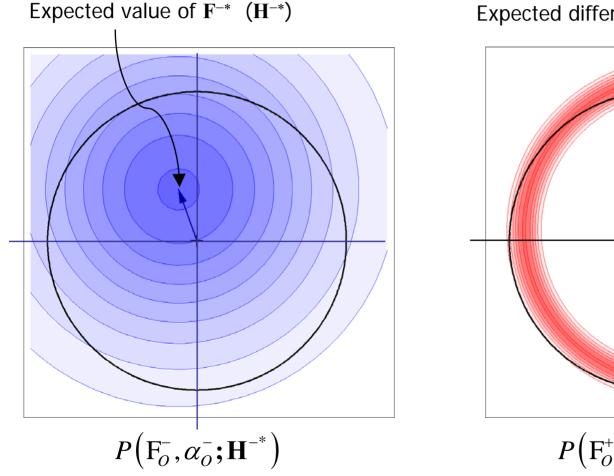
- Gaussian error for observations
- Error in predicting observation generally includes difference between structure factors
 - this is Gaussian in *phased* difference
 - e.g. \mathbf{F} vs. \mathbf{F}_{C} from model, \mathbf{F}_{P} vs. \mathbf{F}_{PH}
- Phased error usually dominates
 - elimination of unknown phase changes probabilities

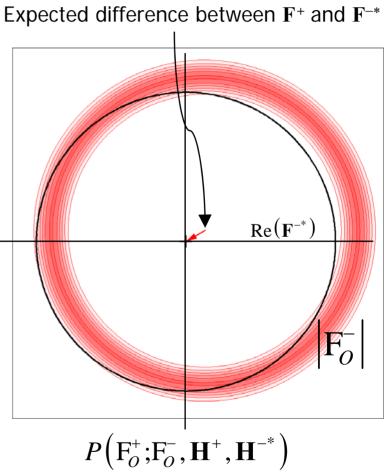
Applying likelihood to crystallography

- Find probability distribution for observations
 - start from structure factor probabilities
 - eliminate unknown phase angles
- Adjust parameters to optimise likelihood
- Applications:
 - calculating model phase probabilities
 - structure refinement
 - experimental phasing (isomorphous/anomalous)
 - likelihood-based molecular replacement

Multivariate complex normal distribution

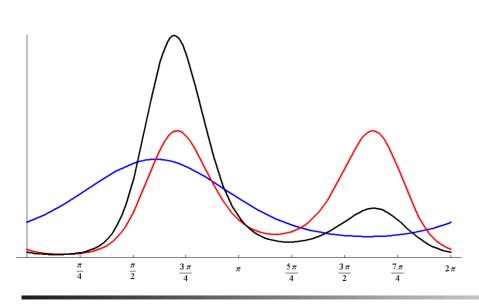
- Complex normal $p(\mathbf{z}_{1}) = \frac{1}{\pi \Sigma} \exp\left[-\frac{|\mathbf{z}_{1} - \langle \mathbf{z}_{1} \rangle|^{2}}{\Sigma}\right]$ $= \frac{1}{\pi \Sigma} \exp\left[-\left(\mathbf{z}_{1} - \langle \mathbf{z}_{1} \rangle\right)^{*} \Sigma^{-1}\left(\mathbf{z}_{1} - \langle \mathbf{z}_{1} \rangle\right)\right]$ Re
- Multivariate complex normal distribution

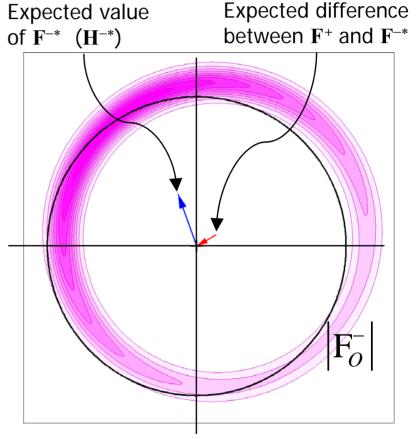

$$p(\mathbf{z}) = \frac{1}{|\pi \Sigma|} \exp\left[-\left(\mathbf{z} - \langle \mathbf{z} \rangle\right)^{H} \Sigma^{-1}\left(\mathbf{z} - \langle \mathbf{z} \rangle\right)\right], \text{ where }$$


elements of
$$\Sigma$$
 given by $\sigma_{ij} = \langle (\mathbf{z}_i - \langle \mathbf{z}_i \rangle) (\mathbf{z}_j - \langle \mathbf{z}_j \rangle)^* \rangle$

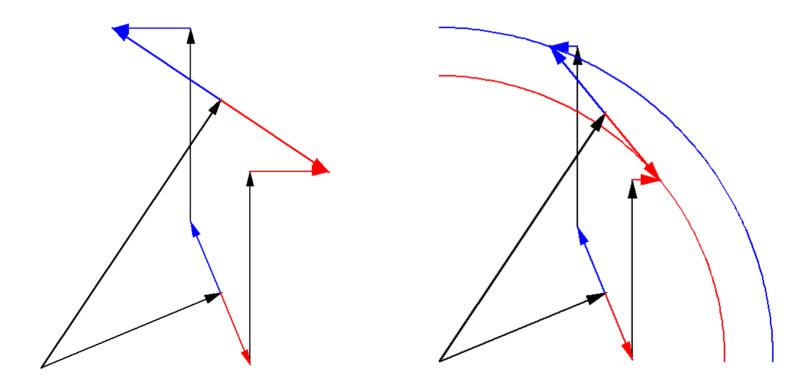
SAD likelihood function

- Based on probability of F^+ and F^- given model $p(\mathbf{F}_O^+, \mathbf{F}_O^-, \mathbf{H}^+, \mathbf{H}^-) \rightarrow p(\mathbf{F}_O^+, \mathbf{F}_O^-; \mathbf{H}^+, \mathbf{H}^-)$
- Factor joint probability into two parts $p\left(\mathbf{F}_{o}^{+}, \mathbf{F}_{o}^{-}; \mathbf{H}^{+}, \mathbf{H}^{-}\right) = p\left(\mathbf{F}_{o}^{+}; \mathbf{F}_{o}^{-}, \mathbf{H}^{+}, \mathbf{H}^{-}\right) p\left(\mathbf{F}_{o}^{-}; \mathbf{H}^{-}\right)$
- Integrate out unknown phases, α^+ and α^-

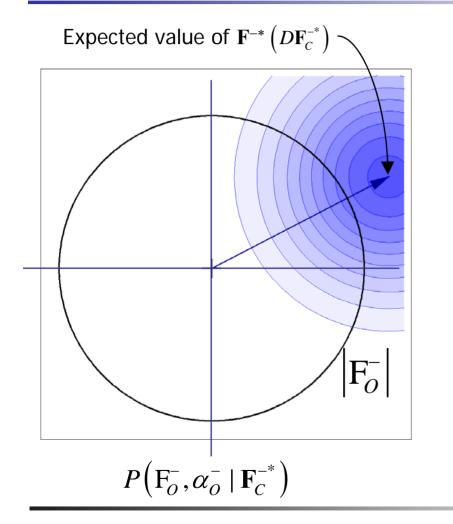

Intuitive understanding of SAD phasing

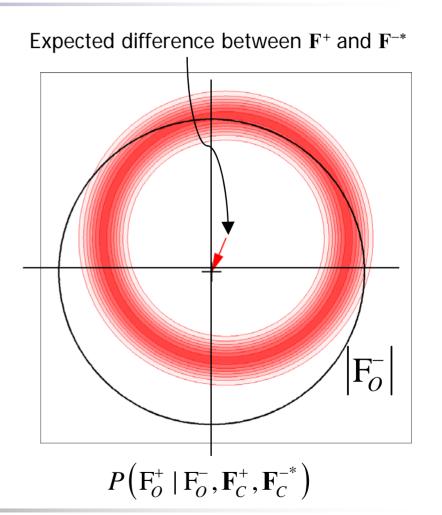


Intuitive understanding of SAD phasing

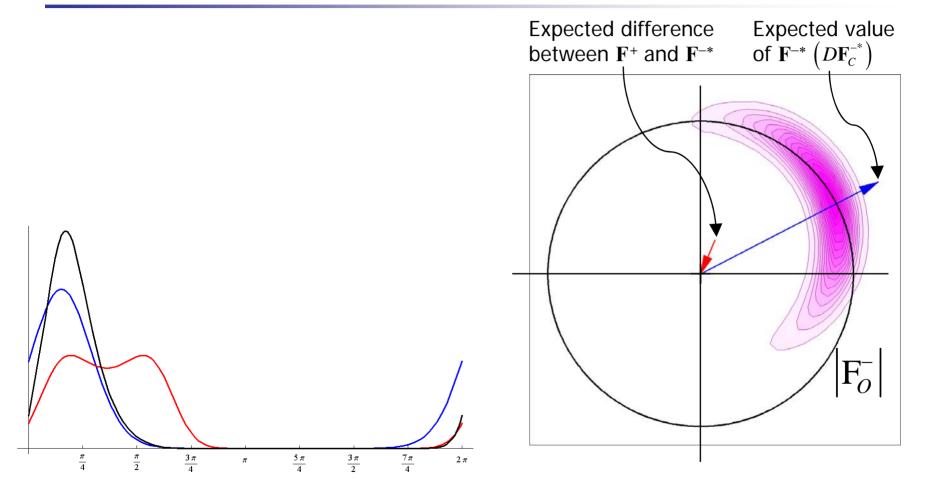

Total likelihood is integral of the product of the two distributions under the black circle

Breakdown of Friedel's law


• Friedel's law breaks down for mixture of scatterers differing in real:anomalous ratio



SAD log-likelihood gradient (LLG) map


- Compute derivative of log-likelihood with respect to heavy atom structure factor
- Fourier transform gives map of where likelihood target would like to see changes in anomalous scatterer model
- Very sensitive to minor sites
 - picks up sites identified as water molecules in refined structures determined by halide soaks
- http://www-structmed.cimr.cam.ac.uk/phaser/tutorial
 - tutorial with data for lysozyme iodide soak

SAD with partial model

SAD with partial model

Combining MR and SAD

- CuK α data to 1.9Å on hen egg-white lysozyme
 - can't find sulfurs with HySS or SHELXD
- Solve by MR with goat alpha-lactalbumin (40% identical)
- Use MR model as "substructure" for SAD
 - look for S atoms in LLG map (finds all 10 S, 5-9 Cl⁻)
 - phases automatically combine MR and SAD
- Automated fitting with density-modified map
- <u>http://www-structmed.cimr.cam.ac.uk/phaser/tutorial</u>
 - tutorial with these data

Iterative model-building with SAD

- Nitrate reductase structure (Natalie Strynadka)
 - integral membrane protein, 1976 residues
 - contains 21 Fe atoms, 1 Mo, 118 S, 5 P (146 total)
 - solved using combination of Fe-MAD, MIRAS
- Fe peak SAD data only
 - find 11 "Fe" sites with phenix.hyss
 - several are super-sites of Fe_4S_4 clusters
 - phase and complete adding Fe, Mo, S with *Phaser*
 - total of 57 sites: 20 Fe, 6 Mo, 31 S
 - superatoms are resolved, 51 of 57 are identified correctly
 - correct hand indicated by number of sites, LLG score

Iterative model-building and phasing

- Improve phases by density modification
- Build with ARP/wARP (or Resolve)
 - 1607 residues, 1368 docked in sequence
- LLG completion from ARP/wARP model
 - 105 sites, 92 correctly identified
- Repeat DM and ARP/wARP
 - 1813 residues, 1775 docked in sequence

Automation of SAD phasing

- Functions are all available from Python
 - used for SAD in AutoSolve wizard
 - can run from HAPPy (CCP4)
- Log-likelihood-gradient completion
 - look for one or several types of scatterer
 - start from MR model or partial substructure
 - analyse map to add sites, make atoms anisotropic
 - delete atoms that fade away
 - change atom type if occupancy far from one
 - repeat to convergence

Absolute scaling

- SAD target uses real (partial structure) scattering and anomalous scattering
 - best results if f" known precisely
 - helps to have data on absolute scale
- use BEST data from Sasha Popov
 - average intensities as function of resolution
- get Wilson B-factor, absolute scale
 - have to define composition of crystal

Practical aspects of SAD phasing in *Phaser*

- Provide information about cell content
 - sequence, molecular weight, percent solvent...
 - used to put data on absolute scale
 - occupancies are reasonably accurate
- Provide information about f" values
 - wavelength (table lookup) or measured
 - refined by default if only one atom type
- Try both hands if uncertain
 - separate completion if mixture of atom types

SAD phasing in CCP4

- ccp4i interface has *Phaser* SAD phasing module
- Two modes:
 - "Single-wavelength anomalous dispersion (SAD)"
 - start from substructure of anomalous scatterers
 - can test both hands, complete with multiple scatterers
 - "SAD with molecular replacement partial structure"
 - start from substructure of non-anomalous scatterers
 - optionally include known anomalous scatterers

🔴 🕙 🔯 Maximum Likelihood Experimental Phasing In tial parameters from /Users/randy/phaser/	SAD
	Help
Job tille Complete iodide substructure and phase in both hands	
Mode for experimental phasing Single-wavelength anomalous dispersion (SAD)	
Define data	
MTZ in eptute - iod_scala-unique.mtz Browse View	
Crystal Name New F(+) F_New(+) F(+) SIGF(+)	
F(+) F_New(+) SIGF(+) SIGF_New(+) F(-) F_New(-) SIGF(-) SIGF_New(-)	
Resolution 55.216 A to 1.861 A	
Space group read from mtz file P43212	
Enantiomorph choice Both enantiomorphs =	
Scattering at CuK-alpha wavelength = i fix FDP	
LLG-map completion on Aximum number of cycles of completion 50	
LLG-map sigma cut-off for adding new atom sites 6.0	
LLG-map atomic separation distance cut-off by optical resolution	
LLG-map calculation atom type I	
Edit list — Add another atomtype	•
Define atoms	•
Anomalous atom sites 🛛 in PDB file 🛁 📃 Set B-factors to 🛛 Wilson B 💻	
PDB file eptute - jod hyss consensus model.pdb Browse View	
Composition of the asymmetric unit	
Component #1 protein — sequence file — Number in asymmetric unit 1	
SEQ file eptute hewl.pir Browse View	
	-1

SAD phasing in Phenix

- Use AutoSolve wizard
 - GUI version prompts for necessary information
 - command-line version is faster
 - finds sites with Hyss
 - automatically uses *Phaser* for phasing if SAD data
 - tests both hands, chooses best hand
 - carries out Resolve density modification and modelbuilding

Background information

- *"Phaser* crystallographic software", McCoy, Grosse-Kunstleve, Adams, Winn, Storoni & Read (2007), *J. Appl. Cryst.* 40, 658-674.
 - plus papers cited here
- "Liking likelihood", Airlie J. McCoy (2004), Acta Cryst. D60, 2169-2183.
- http://www-structmed.cimr.cam.ac.uk/phaser
- <u>http://www-structmed.cimr.cam.ac.uk/Course</u>

Acknowledgments

- Molecular replacement
 - Airlie McCoy, Laurent Storoni, Gabor Bunkoczi, Rob Oeffner
- Experimental phasing
 - Raj Pannu, Airlie McCoy, Laurent Storoni
- PHENIX collaboration
 - Ralf Grosse-Kunstleve, Nigel Moriarty, Paul Adams
 - Tom Terwilliger

