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Density MDensity M

 Traditional density
modification: e.g.
'dm', 'solomon', 
'parrot', CNS

 Statistical density
modification:
e g 'resolve' 'pirate'e.g. resolve , pirate

odificationodification



Density modificatio
 Density modification is a 

information:
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problem in combining 



Density modificatio
1. Rudimentary calculati
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Density modificatio
2. Phase weighting:
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Density modificatio
3. Phase probability dist
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Density modificatio
4. Bias reduction (gamm

|F| P() |Fb

centroid
|F|, P() |Fbest

P()=Pexp(),Pmod

Pmod() |Fmodlikelihood

Kevin Cowtan, cowtan@ysbl.york.ac.uk

n DM, SOLOMON, (CNS)

ma-correction):
, , ( )

(x)
FFT

| b (x)

Modify 
t|, best

d() mod(x)

-correc

(x)
FFT-1d|, mod

J.P.Abrahams



Density modificatio
5. Maximum Likelihood H
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Density modificatio
6. Statistical density mod
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Density modificatio
How do we represent phase
Henrickson-Lattman coeffs: 4 n

a bimodal distribution in phas

A,B represent a unimodal distributio
C D t th i d bi
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C,D represent the superimposed bio

n
e probabilities?
umbers - A,B,C,D representing , , , p g
e angle:

n (equivalent to , FOM)
d litomodality.



Density modificatio
Traditional density mod

Solvent flattening Solvent flattening
 Histogram matching

Non crystallographic s Non-crystallographic s
averaging
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n
ification techniques:

symmetry (NCS)symmetry (NCS) 



Solvent flattening
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Histogram matching
A technique from image proces

for modifying the protein regi
 Noise maps have Gaussian 

histogram.
 Well phased maps have a Well phased maps have a 

skewed distribution: sharper 
peaks and bigger gaps.

Sharpen the protein density bySharpen the protein density by 
transform which matches the
histogram of a well phased m

Useful at better than 4A.
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Non-crystallograph
 If the molecule has intern

symmetry, we can averay y,
together related regions.

 In the averaged map, the
signal-noise level is impr

 If a full density modificati
calculation is performedcalculation is performed,
powerful phase relations
are formed.are formed.

 With 4-fold NCS, can pha
from random!
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Non-crystallograph
Useful terms:
 Proper and improper NC Proper and improper NC

(closed and open)

 Multi-domain averaging:

 Multi-crystal averaging:

Kevin Cowtan, cowtan@ysbl.york.ac.uk

ic symmetry

S:S:



Non-crystallograph
 How do you know if you 

 Cell content analysis – hoy
 Self-rotation function.
 Difference Pattersons (ps

How do you determine th How do you determine th
 From heavy atoms.
 From initial model buildingg
 From molecular replacem
 From density MR (hard).

Mask determined a toma Mask determined automa
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ic symmetry
have NCS?

ow many monomers in ASU?y
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Non-crystallograph
Crystallographic

Aligned
2-fold

Aligned
6-fold
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ic symmetry
Non-
crystallograpic

Unaligned
2-fold

Aligned
5-fold



Estimating phase p
Problem: How do we go fro

to a full phase probabilityp p y
 We need to make an est

estimated phase.
 The errors in the phases 

model itself, and may be 
methodsmethods.
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om a single phase estimate 
y distribution?y
imate of the error in the 

are a parameter of the 
estimated by likelihood 



Estimating phase p

We know |Ftrue|, |Fpart|, part
Assuming part, miss are ing part miss

expect the difference in m
and |Fpart|, averaged over
indication of the phase erindication of the phase er
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probabilities

t
ndependent, then we p
magnitudes between |Ftrue| 
r reflections, to give an 
rrorrror.



Estimating phase p
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probabilities



Combining phase p
Once we have an estimate 

can construct a probabilitp
The the next cycle can be s

Pnew() =
Problem: Pexp() and Pmod

The result is bias, increas
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probabilities
for the error in mod, we 
y distribution Pmod().y mod( )

started with
= Pexp()Pmod()p
() are not independent.
sing with cycle.



Bias reduction
Solution:
Make each reflection only dependeMake each reflection only depende
on the other reflections in the 
diffraction pattern, and not on its ow
initial value.initial value.
Omit one reflection at a time, and u
only the modified value of the omitt
reflection (Very slow )reflection. (Very slow.)
But can be implemented efficiently:
 Solvent flipping
 The -correction
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Density modificat
Builds on existing i
 DM:

 Solvent flattening
 Histogram matching
 NCS averaging
 Perturbation gamma

 Solomon:
 Gamma correction
 Local variance solvent
 Weighted averaging m

ion in Parrot
deas:

t mask
mask



Density modificat
New developments:
 MLHL phase combina

 (as used in refinement
 Anisotropy correction

P bl ifi d Problem-specific dens
 (rather than a standard

 Pairwise-weighted NC

ion in Parrot
:
ation
t: refmac, phenix.refine)

it hi tsity histograms
d library)

CS averaging...



Estimating phase
Traditional approach: Ri

Estimate the Turn thiEstimate the 
accuracy of the 

modified F/phase

Turn thi
phase pr

distrib

The estimate for the accura
come from the agreement b
the observed F. Source of b

 probabilities
ce likelihood function

s into a Combine with thes into a 
robability 
bution

Combine with the 
experimental 

phase probability

cy of the modified F/phase 
between the modified F and 
bias.



Estimating phase
Problem:

Error estimation does not 
take into account 

experimental phase p p
information

Using the additional informaUsing the additional informa
improves the error model an

 probabilities

The experimental data 
tells us that the probable 

error is different in the two 
cases

ation from the phasesation from the phases 
nd reduces bias.



Estimating phase
Solution:
MLHL type likelihoodMLHL-type likelihood
target function.

Perform the error estimation
a single step, using a likelih
incorporates the experimen
priorprior.
This is the same MLHL-type
target used in modern refinetarget used in modern refine
refmac or phenix.refine.

 probabilities

n and phase combination in p
ood function which 
tal phase information as a 

e like likelihood refinement 
ement software such asement software such as 



Recent Developm
Pairwise-weighted NCS

A h i f Average each pair of 
separately with its ow

 Generalisation and au
domain averagingdomain averaging.

ments:
S averaging:
NCS l t d l lNCS related molecules 
n mask.

utomation of multi-

A

B
C



Parrot



Parrot
Summary:
A l i l d itA new classical density 

employing the latest te
 Fully automated

Fast Fast
 Better results than DM

difi timodification program, 
echniques. 

M



D it MDensity M
Kevin Cow

Statistical densi
e.g. Resoe.g. Reso
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difi tiodification
wtan, York.

ity modification:
olve, Pirateolve, Pirate



Density modificatio
 Traditional density modif

Take the phases to the mask.
Use them to calculate a map.
But how do we get back to:
 reciprocal space?

b bili i ? probabilities?

 Statistical density modific
Take the mask to the phasesTake the mask to the phases.
 First convert mask to

probability.
 Then transform thatThen transform that

probability.
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Statistical density m
 Form a statistical descrip

features.

 e.g. 
P t i h hi h Protein has higher me
(higher variance)
Solvent has lower mea Solvent has lower mea
variance)
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modification
ption of expected map 

d i kean, and is more peaky 

an and is flatter (loweran, and is flatter (lower 



Statistical density m
 Probability of a map is de

these distributions:
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modification
etermined by how well it fits 

P b blProbable

Improbable



Statistical density m
 Probability of each struct

probability of the correspp y p
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modification
ture factor is given by the 
ponding map.p g p

I (F(h))( ( ))

R (F(h))R (F(h))



Statistical density m
 Obtain per-grid density p
 Transform to reciprocal s Transform to reciprocal s
 Combine with experimen

 Map probability becomes 
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modification
probability distributions.
space.space.
ntal phases.

phase probability distribution.

X

Improved phases
and maps.

Bricogne (1992) Proc. CCP4 Study Weekend
Bricogne (1997) Methods in Enzymology



Statistical density m
Advantages:

Reduced bias Reduced bias.
 Better phases.

Disadvantages:
Slow Slow.

 PIRATE in particular w
cases and badly for otcases and badly for ot
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modification

works well for some 
thersthers.
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DM vs Parrot
Map
correlationscorrelations

Parrot:Parrot:
No new
featuresfeatures
enabled.



Parrot: Rice vs MLHL
Map
correlationscorrelations

ComparingComparing
old and new
likelihoodlikelihood
functions.



Parrot: Isotropic vvs Anisotropic
Map
correlationscorrelations

ComparingComparing
with and
withoutwithout
anisotropy
correctioncorrection.



Parrot: simple vs NCS averaged
Map
correlationscorrelations

ComparingComparing
with and
withoutwithout
NCS
averagingaveraging.



DM vs PARROT v
% residues autobuilt and
50 JCSG t t 1 850 JCSG structures, 1.8
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d sequenced
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DM vs PARROT v
Mean time taken
50 JCSG t t 1 850 JCSG structures, 1.8

6s 10s
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8 3 2A l ti8-3.2A resolution
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DM vs PARROT vs
% residues autobuilt and se
50 JCSG structures, 1.8-3.250 JCSG structures, 1.8 3.2

74.2% 78.4%

DM PARRO
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DM vs PARROT vs
Mean time taken
50 JCSG structures, 1.8-3.250 JCSG structures, 1.8 3.2

6s 10s
DM PARRO
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