

June 2009 Chicago

Ligand fitting and Validation with Coot

(Paul Emsley)
(University of Oxford)

Bernhard Lohkamp
Karolinska Institute

Fitting Ligands

REFMAC Monomer Library chem_comp_bond

REFMAC Monomer Library chem_comp_tor

```
loop_
_chem_comp_tor.comp_id
_chem_comp_tor.id
_chem_comp_tor.atom_id_1
_chem_comp_tor.atom_id_2
_chem_comp_tor.atom_id_3
_chem_comp_tor.atom_id_4
_chem_comp_tor.value_angle
_chem_comp_tor.value_angle_esd
_chem_comp_tor.period
    TRP chil N CA CB CG 180.000 15.000 3
    TRP chi2 CA CB CG CD1 90.000 20.000 2
```


Ligand Fitting

- c.f. Oldfield (2001) Acta Cryst. D x-LIGAND
- Somewhat different torsion search algorithm
- Build in crystal-space

Ligand Site

Ligand Torsionable Angle Probability from CIF file

Torsionable Ligands

Needs non-bonded contact idealization

Crystal Space

- Build in "crystal space"
- Like real-space, but wrapped by crystal symmetry
- Like "Asteroids"
- Assures only one real-space representation of map features
- Build everything only once,
- No symmetry clashing
- However, more difficult to calculate real space geometries
■ ...such as bonds, torsions

Clipper Map Mapping

- Clipper maps
- Appear to be "infinite"
- Density value can be queried anywhere in space

Conformation Idealization

- Each conformer is passed through the "Regularization" function of Coot
- Non-bonded terms included
- Better to have hydrogen atoms on the model
- Slows things down a good deal...
- May not be the best method to explore conformational variability for many rotatable bonds

Ligand Overlay

- Algorithm and Code by Eugene Krissinel
- Tries to overlay different ligands/monomers by graph matching
- Useful for "database" ligands where atom names are not selected by hand
- Has been used as the basis of the function which "mutates" residues to alternative monomer types
- e.g. phosphorylation

Feature Integration

Refinement

Easy communication of Information back for rebuilding

Good Enough?

Validate

Validation...

What is Validation?

- Comparison of Various aspects of the model with pre-conceived notions of "good quality"
- Includes unrestrained and restrained criteria
- Many aspects of validation overlap with refinement and model-building

Why Validate?

- Model-building is error-prone
- (although automated methods seem to do better)
- Someone else did the model-building
- The model was built several years ago
- and the notion of "good quality" has changed
- Deposition requires validation

Observations to Parameters Ratio

- Some typical numbers
- to $2 \AA, 22000$ reflections
- 200 residues $\times 10$ (atoms/residue) $\times 4$ params/ atom
- -> about 2.6
- To 3A:
- Ratio is about 1:1
- As statisticians, we prefer our models to be parsimonious

Depending on solvent content and the manner in which NCS is handled

A "good" model

- Makes statistical sense
- The reciprocal space representation agrees tolerably well with the observations (R-factor)
- No meaningful difference map peaks
- Makes Chemical sense
- Model Geometry is consistent with the restraints
- Ramachandran Plot has less than 1\% outliers
- A good clashscore
- Makes Biological sense
- Residues in chemically sensible environment
- Is consistent (on the whole) with external biochemistry observations (active site residues)

Quick Bayes

- Bayes Eq:
- $\operatorname{Pr}($ model \mid data $) \propto \operatorname{Pr}($ data \mid model $) * \operatorname{Pr}($ model $)$
- $\operatorname{Pr}($ data \mid model $)$ is also called the Likelihood, L(model | data)

Validation Tools - Pr(model)

- Ramachandran Plot
- Kleywegt Plot (NCS differences)
- Geometry Analysis
- Peptide ω Analysis
- Temperature Factor Analysis
- Rotamer Analysis
- [Clashes]

Rotamers

- Side-chains have certain preferred combinations of torsions round their rotatable bonds
- An analysis (batched around the staggered conformations) will give rotamer occurrence

Validation Tools Pr(data|model)

- Density Fit Analysis
- Difference Map Peaks
- Variance analysis at Water Positions
- Unmodelled blobs

B-factor variance

Chiral Volume Analysis

- Based on data in the Refmac dictionary
- ...was needed because it was possible with Coot to accidentally invert Chiral centres
- e.g. Cas, C β (THR)
- (Easily corrected with the Mutate \& Autofit tool)
- These days we have chiral volume restraints

000

X B Factor Variance Graphs

Check/Delete Waters

Difference Map Sampling

Torsion-based Validation

In principle, there is free rotation

In practice, staggered is energetically more favoured

Eclipsed

Staggered

Most favoured staggering angles 60, 180, -60 degrees

Peptide Torsion Angles

Peptide ω

- Needed to check the planarity of the peptide link
- At low resolutions it is possible to give the protein lots of (too much) freedom to optimize the fit to the density
- Can accidentally create CIS peptides
- When discovered they are easily reconverted using the CIS<->TRANS peptide tool
- Less accidents happen when peptide plane restraints are applied

Ramachandran Plot for residues with CB

Ramachandran Plot for GLY

Ramachandran Plot for PRO

Kleywegt Plots["]

[*] Named by George Sheldrick

More Validation Pr(model)

- Coot has interface to Molprobity
- (Molprobity is the widely regarded as the best model validation suite)
- Uses identical Ramachandran plot
- Uses identical Rotamer library
- Coot reads probe dots directly

Analyzed all－atom contacts and geometry for 1sarH．pdb

Analyzed all－atom contacts and geometry for 1 sarH．pdb
Entry begun：Today at $1: 49 \mathrm{pm}$ EST
Last modified：Today at $1: 49 \mathrm{pm}$ EST

Summary statistics

All－Atom Contacts	Clashscore，all atoms：	12.49	$60^{\text {th }}$ percentile $(\mathrm{N}=837,1.55 \AA-2.05 \AA)$
	Clashscore， $\mathrm{B}<40:$	10.76	$41^{\text {st }}$ percentile ${ }^{*}(\mathrm{~N}=837,1.55 \AA-2.05 \AA)$
	Rotamer outliers	1.83%	Goal：$<1 \%$
	Ramachandran outliers	0.00%	Goal：$<0.2 \%$
	Ramachandran favored	99.47%	Goal：$>98 \%$
	C β deviations $>0.25 \AA$	11	Goal： 0
	MER［ALPHA TEST －don＇t ask］	1.81	$78^{\text {th }}$ percentile $(\mathrm{N}=11444,1.55 \AA-2.05 \AA)$

＊ $100^{\text {th }}$ percentile is the best among structures of comparable resolution； $0^{\text {th }}$ percentile is the worst．

Multi－criterion visualizations

Multi－criterion kinemage（970 Kb）：View in KiNG｜Download

Multinatiemort Cnart

Download multi－criterion to－do list for Coot［ALPHA TEST］
Open this in Coot using Calculate｜Run Script．．

Single－criterion visuailzations

－Clash list
－Ramachandran plot kinemage（ 344 Kb ）：View in KiNG｜Download
－Ramachandran plot PDF
－C $\boldsymbol{\beta}$ deviation scatter plot（2D）（19 Kb）：View in KiNG｜Download
Done

Other Programs

- Moprobity Suite
- molprobity.biochem.duke.edu
- WHATCHECK
- VERIFY-3D

Acknowledgements

- Paul Emsley
- Kevin Cowtan
- Eleanor Dodson
- Keith Wilson
http://www.ysbl.york.ac.uk/~emsley/coot or

Google: Coot
or for WinCoot
http://www.ysbl.ac.uk/~/ohkamp/coot

- Libraries, dictionaries
- Alexei Vagin, Eugene Krissinel, Stuart McNicholas
- Dunbrack, Richardsons
- Coot Builders and Testers
- William Scott, Ezra Peisach
- York YSBL, Dundee, Glasgow (early adopters)
- Coot Mailing List subscribers

