

The buccaneer software for automated model building of protein structures across a broad range of resolutions.

Kevin Cowtan YSBL, University of York cowtan@ysbl.york.ac.uk

Kevin Cowtan, cowtan@ysbl.york.ac.uk

Statistical model building software based on the use of a reference structure to construct likelihood targets for protein features.

New since 2007: Version 1.0 for CCP4 v6.1

- Buccaneer-Refmac pipeline
- NCS auto-completion
- Improved sequencing

Buccaneer: Method

• Compare simulated map and known model to obtain likelihood target, then search for this target in the unknown map.

Buccaneer: Method

 Compile statistics for reference map in 4A sphere about Cα => LLK target.

• Use mean/variance.

4A sphere about Ca also used by 'CAPRA' loeger et al. (but different target function).

10 stages:

- Find candidate C-alpha positions
- **Grow** them into chain fragments
- Join and merge the fragments, resolving branches
- Link nearby N and C terminii (if possible)
- Sequence the chains (i.e. dock sequence)
- **Correct** insertions/deletions
- Filter based on poor density
- NCS Rebuild to complete NCS copies of chains
- **Prune** any remaining clashing chains
- Rebuild side chains

Use a likelihood function based on conserved density features.

The same likelihood function is used several times. This makes the program very simple (<3000 lines), and the whole calculation works over a range of resolutions.

Finding, growing: Look for C-alpha environment

(4.0A sphere about $C\alpha$)

Case Study:

A difficult loop in a 2.9A map, calculated using real data from the JCSG.

Kevin Cowtan, cowtan@ysbl.york.ac.uk

Find candidate C-alpha positions

Grow into chain fragments

Join and merge chain fragments

Sequence the chains

GL

(+)

Correct insertions/deletions

Prune any remaining clashing chains

Rebuild side chains

Comparison to the final model

Model completion uses "Lateral growing":

Grow sideways from existing chain fragments by looking for new C-alphas at an appropriate distance "sideways" from the existing chain:

Unmodeled density

∜~

Lateral growing likelihood function

New C-alpha candidates

≪~

≪× **Resulting model**

Buccaneer: Results

Model completeness not very dependent on resolution:

Buccaneer: Results

Model completeness dependent on initial phases:

Chain tracing/refinement using Buccaneer/Refmac		×
		Help
Job title		\Box
Data for (unsolved) work structure: (Note: perform phase improvement/density modific	ation fi r st)	
Specify an initial model to be extended.		
Work SEQ in PROJECT 💴	Browse	View
Work MTZ in PROJECT 🛁	Browse	View
FP SIGFP		
HLA HLB		
HLC HLD		
Free R flag		
Use Free-R flag: ■ Use map coefficients: _ Use PHI/FOM instead of HL coefficients: _		
Work PDB out PROJECT - buccaneer.pdb	Browse	View
Options		
Number of cycles of building/refinement to run: 3		
Buccaneer parameters		
Refmac parameters		
Run 🖃 Save or Restore 🖃	Close	9

What it does:

- Trace protein chains (trans-peptides only)
- Link across small gaps
- Sequence
- Apply NCS
- Build side chains (roughly)
- Refine (if recycled)
- WORK AT LOW RESOLUTIONS
 - 3.6A (4A?) with good phases

What it does not do (yet):

- Cis-peptides
- Waters
- Ligands
- Loop fitting
- Move C-alpha to fit rotamer

What you need to do afterwards:

- Tidy up with Coot.
 - Or ARP/wARP when resolution is good.
 - Buccaneer/ARP/wARP better+faster than ARP/wARP.
- Typical Coot steps:
 - Connect up any broken chains.
 - Use density fit and rotamer analysis to check rotamers.
 - Check Ramachandran, molprobity, etc.
 - Add waters, ligands, check un-modeled blobs..
 - Re-refine, examine difference maps.

Buccaneer: Latest

Buccaneer 1.2

- Use of Se atoms, MR model in sequencing.
- Improved numbering of output sequences (ins/del)
- Favour more probable sidechain rotamers
- Prune clashing side chains
- Optionally fix the model in the ASU
- Performance improvements (1.5 x)
 - Including 'Fast mode' (2-3 x for good maps)
- Multi-threading

Buccaneer: Summary

- A simple, fast, easy to use (i.e. MTZ and sequence) method of model building which is robust against resolution.
- User reports for structures down to 3.7A when phasing is good.
- Results can be further improved by iterating with refinement in refmac (and in future, density modification).
- Proven on real world problems.

Achnowledgements

Help:

- JCSG data archive: www.jcsg.org
- Eleanor Dodson, Paul Emsley, Randy Read, Clemens Vonrhein, Raj Pannu
- Funding:
 - The Royal Society