
“Automation Standards & Frameworks”: workshop report

1

“Automation Standards and Frameworks”: workshop report

1. Introduction

There are a number of ongoing initiatives for setting up automated structure determination software
pipelines” that will take diffraction data from X-ray macromolecular crystallography experiments and
produce atomic models. This report describes the joint BIOXHIT/e-HTPX/CCP4 workshop that was
held at Jesus College, Cambridge from 9th-11th February 2005, to look at setting guidelines and
standards for various software automation projects, to ensure compatibility and interoperability
between developments (as part of the BIOXHIT commitment to standards).

The workshop was divided into three sessions looking at different aspects of these projects, and this
report provides summaries of the key points of each in section 2:

 Section 2.1: Standards for frameworks for automation
 Section 2.2: Standards for data exchange between computational units in the structure

determination software pipeline
 Section 2:3 Toolboxes for automation

The presentations themselves are available on the web at:
http://www.ebi.ac.uk/msd-srv/docs/9-11Feb2005/bioxhit05_2.html
(where provided by the speakers after the meeting) and should be referred to for more information.

Section 3 summarises the conclusions and actions from the meeting. Appendix A provides a glossary
that defines some of the terms used in this report. Appendix B summarises details of the various
pipeline efforts based on proforma descriptions provided by the contributors. The proformas are also
available on the web at http://www.ebi.ac.uk/msd-srv/docs/bioxhit05_1.html.

Acknowledgements

The BIOXHIT Project is funded by the European Commission with its FP6 Programme within the
thematic area “Life sciences, genomics and biotechnology for health,” contract number LHSG-CT-
2003-503420.

The CCP4 Project is supported by the BBSRC, by income from commercial distribution of the
software, and by CCLRC Daresbury Laboratory.

e-HTPX is an e-science pilot project funded by the BBSRC.

The workshop programme was organised by Peter Briggs, Kim Henrick, Graeme Winter and Charles
Ballard, with many thanks to Janet Copeland for the local organisation. We would also like to thank all
the speakers and workshop delegates for their contributions. This report was prepared by Peter Briggs.

“Automation Standards & Frameworks”: workshop report

2

2. Summaries of the sessions

The following sections summarise each of the sessions from the workshop.

2.1 Standards for Frameworks for Automation

This session aimed to address some of the issues in BIOXHIT task 5.1.1 (“Setting BIOXHIT guidelines
for software developers”) and was based around presentations on a number of ongoing automated
software pipeline developments:

 Decision-making in DNA (Graeme Winter, Daresbury Laboratory)
 AutoSHARP (Clemens Vonrhein, Global Phasing)
 CRANK (Steven Ness, University of Leiden)
 CHART (Paul Emsley, University of York)
 AutoRickshaw (Santosh Panjinkar, EMBL Hamburg)
 Small Molecule Pipelines (Simon Coles, University of Southampton)
 CS2 (Tassos Perrakis, NKI)
 PHENIX (Paul Adams)

In addition to these each of the speakers kindly provided proforma descriptions of their pipelines.

The aim of the session was to set guidelines on how pipeline components should interact. One way to
do this is to examine commonalities between the current pipeline developments. However the
presentations made it clear that there are a wide range of different aims, methodologies, technologies
and philosophies amongst these different projects.

Table 1 below summarises the key differences and commonalities:

Differences Commonalities
 Modular versus monolithic approaches

(affects maintenance and extensibility)
 Process-driven versus data-driven

approaches
 Speed of operation: for some systems (e.g.

DNA, Auto-Rickshaw) speed is an issue and
this can affect choices of programs and
input parameters

 Variety of programming languages (Python,
shell, Tcl, Scheme, Perl, Java)

 Variety of methods for storing and passing
data (via common file formats such as MTZ
and PDB, XML, grep-able flat
files/directory hierarchies)

 Different target end users and delivery
methods (e.g. webservice versus desktop,
novice versus experienced users). This is
also reflected in the differences in user
interfacing and the level of control given to
the user – for example, CRANK is intended
as a teaching aid and exposes more of the
control to the user than e.g. DNA.

 Approach is to connect together large
number of computational units to generate
the pipeline functionality

 Common set of key computational units
(SHELX, ARP/wARP, REFMAC…)

 CCP4 used as a source of jiffies
 Programs tend to be wrapped inside an

interface layer that facilitates integration
into the pipeline (although actual wrappers
are specific to each development)

 A lot of effort is needed for
converting/reformatting data (e.g. between
data file formats or program input)

 A lot of effort is needed to parse and
extract data from program output

 User interfaces are important

Table 1: Summary of differences and commonalities between pipeline developments

Some key points from the presentations (NB these are not intended to be summaries of the
presentations themselves – please refer to the proforma descriptions and to the presentations
themselves for more information):

“Automation Standards & Frameworks”: workshop report

3

 DNA: highlighted issues of getting information from programs that form the computational units.
This has been circumvented for some units (e.g. MOSFLM, SCALA) by adding new code to the
programs to write out in XML. Using “grep” or equivalent is unsatisfactory as it is unstable (if
program output changes at the next release) and scales poorly for large amounts of data (important
if speed is a factor). However the DNA “standards” for its XML are ad hoc as there is no current
standard for the content or format of the XML that is used.

 AutoSHARP: starts with minimal user input and asks, “what do I know?” rather than “what do I
need?” (i.e. a data-driven approach). Will always present information (notes/warnings/errors) to
the user, which might trigger a decision outside the framework by the user. Issues with stability of
its component computational units.

 CRANK: runs a number of different crystallographic programs. XML is used ubiquitously within
CRANK: input parameters, run commands and (most) decision-making criteria are stored in XML;
XML is translated into input for specific programs; the program output is converted to XML
storage.
Advantages of using XML:

 Object oriented datastore; language neutral external data structure
 Only need 2N conversion jiffies (rather than N2) to convert between formats
 XML is a standard in computing (so lots of tools are already available)
 Possibly of exchanging XML with other packages that also use this format

CRANK is implemented in Tcl within CCP4i (gives familiar interface, job control and help system
– useful for both novices and experts). It is noted that the GUI separates “generic” and “specific”
parameters (for datasets versus programs).
Automated test set generation allows easy testing of CRANK with different parameters.

 CHART: based on Scheme and developed up until 2000. Links together CCP4 programs plus
SHELX. Data analysis (i.e. reading and understanding program logfiles) is the trickiest part (issues
with parsing and interpretation). There were some issues with upgrading to CCP4 5.0.2 from 4.2
(e.g. changes to symmetry library). Notes that grep/awk are lightweight alternatives to XML.
Parallelisation is possible by running several SHELX or MLPHARE jobs on different machines,
but no suitable batch queuing system available.

 Auto-Rickshaw: primary aim to achieve an interpretable electron density map & a partial structure
in minimal time. Runs on a 16-CPU cluster and is available to users as a webservice. Characterise
programs in different areas of parameter using speed as one of the criteria.

 UK National Crystallography Service Grid Facility: Simon Coles described a complete high-
throughput system (going from initial application through to automated structure solution)
standardised as a Grid service, for small molecule crystallography. Automated structure solution
uses “public domain programs” (mainly SHELX) in an intelligent manner and applies validation
throughout the refinement. Dissemination is impeded by current publication protocols,
circumvented by using an “open archive” solution (ecrystals.chem.soton.ac.uk) – this is possible
because the process is very standardised.

 PyWARP/CS2: pyWARP is new control system for ARP/wARP – made up of Python modules,
stores data in and reads from XML. CS2 is toolbox developed to implement pyWARP. Uses data-
driven approach: a program is the means to move between decisions & decision-making is isolated
from running the programs. A “step manager” stores dictionary values & the decision trajectory.
History of decisions is stored in real time as XML. CS2 is designed to be easily extensible to other
task (not just ARP/wARP).

 PHENIX: aims to provide a environment:
 For users: automated structure solution that includes flexibility and control and a feedback

system
 For developers: access to modern software tools that allow rapid development within an

open system

“Automation Standards & Frameworks”: workshop report

4

Offers a number of interfaces (command line, automated strategies and “wizards”) for different
users. Design considerations include long-term maintainability & reusability, requirement to be
able to integrate different components, avoid duplication of efforts of others.
Planned to use object serialisation to map data into storage and then provide import/export
methods to existing file formats like MTZ – in practice MTZ & PDB etc files still needed to
transfer information between programs (due to limitations of programming languages & program
use).

Discussion & Comments

A number of issues were raised doing the discussion. It was recognised that defining standards is
difficult for a dynamic field such as this, where there are always new algorithms, methodologies and
programs appearing.

Defining standards should be possible in the case of archival standards (for final results) but is much
harder to do for “intermediates”, which are very dependent on the user of the information and the
algorithm. A prerequisite for useful information exchange is therefore the definition of realistic
expectations about what is being exchanged. There was also an issue about whether data history should
also be exchanged as part of this process.

It was suggested that an “object exchange mechanism” would be the best approach but is unrealistic
(presumably because it requires that all programs use a common set of standard objects – unlikely to
happen given the diversity of the available software). A hierarchical description of the data should be
considered, as this would be able to capture the complexity of the data and would make it easier to deal
with object changes. XML might be good choice (as it has a hierarchical structure), definitely try to
avoid fixed formats (like PDB) and “flattened” formats (like mmCIF).

It is also important to separate the content (i.e. the information being transferred) from the format (i.e.
the XML or other file format being used to transfer it).

“Automation Standards & Frameworks”: workshop report

5

2.2 Standards for Data Exchange between Computational Units in the
Structure Determination Software Pipeline

The aim of this session was to contribute to BIOXHIT task 5.1.2 (“Setting BIOXHIT guidelines for
data exchange (Metadata)”) by examining what data is required at each stage of the structure
determination process for:

 Decision making and feedback
 Data transfer
 Archiving and deposition

We hoped to be able to define a practical hierarchy of functional blocks (see glossary) within the
pipeline. The interfaces of these blocks would be where we could usefully answer the questions above.

Three broad areas were discussed, with introductory scene-setting presentations:

 Section 2.2.1: Images to reduced reflection data
 Data Exchange with MOSFLM (Andrew Leslie)
 Diagnostics after processing with XDS, MOSFLM/SCALA & HKL2000 (George

Sheldrick)
 Section 2.2.2: Reduced reflection data to phases

 Phasing from heavy atoms (George Sheldrick)
 Phasing from molecular replacement (Airlie McCoy)

 Section 2.2.3: Phase information to refined model
 Model building (Victor Lamzin)
 Refinement (Garib Murshudov)

The key points from the presentations and the discussions are given in the subsequent sections.

2.2.1 From images to reduced reflection data

Key points from the presentations:

 MOSFLM: outlined the key sets of input and output parameters from MOSFLM (input includes
diffraction images & physical parameters of the experiment, output includes batch MTZ file and a
summary of the processing results). Some items are not currently calculated/output/stored (e.g.
total elapsed exposure time) but could be if useful. Consideration needs to be given to other
quantities (e.g. standard deviations of cell parameters) in order for these to be realistic/useful.
The MTZ file output contains the principal information to be passed downstream. Recommended
archiving the summary file for deposition purposes.

 Diagnostics after data processing: the BIOXHIT test crystal (intended as a diagnostic tool, to
provide a quick empirical method to check hardware/software pipeline) revealed differences in
integrating/scaling software. Overall indicators of data quality were identified as

 Internal consistency index for equivalent reflections (Rint)
 Redundancy independent merging R-factor (Rrim)
 Precision indicating merging R-factor (Rpim)

Patterns in test crystal data gave indications of defects in detector/hardware, problems in
experimental set-up (e.g. crystal not centred, or beam missing centre of rotation). Also suggests
issues with integration software.

Discussion & Comments

Gerard Bricogne led the discussion section. He questioned whether “images to reduced reflection data”
are the correct limits to be considering, and called for the standardisation of software rather than
hardware. Data processing involves numerous programs, each of which still needs new features and
which are likely to continue to evolve considerably in terms of their scientific content. Abstraction
(moving away from thinking of individual programs, towards what they actually do) and

“Automation Standards & Frameworks”: workshop report

6

standardisation is required to create new connectivity, moving away from the current “post-mortem”
approach of data collection towards a closer relationship between the strategies of data collection and
of structure solution.

He recognised that both getting data out of programs (harvesting intermediate results & preserving their
hierarchy) and getting non-default commands into programs (to circumvent the current limitations) are
both issues to be addressed. Gerard proposed the notion of a “Protocol Descriptor”, which will have a
number of properties:

 Allow the description of a feasible data collection protocol in a specified experimental
context, in such a way that the descriptors can be combined

 Enable ranking of protocols by simulation
 Able to be translated into sequence of commands in order to execute the experiment (this will

require a command vocabulary)
Able to monitor, evaluate and if necessary revise the process as it’s happening
 Allow annotation

It was suggested that the DNA data model could be used as a starting point for these ideas. There are
issues with how the evolution should be managed, the choice of communication tools, embedding in a
data model which could also provide tools for defining beamline configuration files and then querying
them, and the use of a tool like CCPN to turn the standard data model into a set of APIs for different
media (Python, Java, XML, SQL, Perl).

2.2.2 Reduced reflection data to phases

Key points from the presentations:

 Phasing from heavy atoms: George Sheldrick gave an overview of the SHELX pipeline for heavy
atom substructure determination. Noted that it is important to work with umerged unsorted data, as
there is more statistical information in unmerged data for assessing the quality of weak anomalous
signals. Notes also that philosophy in SHELXD is to make assumptions and do things as quickly
as possible (this seems to work) – for example it ignores user input of element type, as this
information isn’t used.
SHELXD requires α (angle added to calculated heavy atom phase φA to obtain the native phase φT)
– notes that no CCP4 program calculates this (needs XPREP or SHELXC).
Critical parameters for SHELXD:

 Choice of resolution cut-off for the ΔF-data
 Number of sites to search for (should be within 20% of true value for occupancy

refinement to work)
 Need to check if atoms lie on special positions
Beginner’s error is not to give SHELXD enough “tries” when searching for solutions – it

can take 100+ tries to get one good solution
General assumptions for phasing (SHELXE):

Don’t refine heavy atom coordinates & occupancies output from SHELXD, and ignore B-
values

 Only assume that one type of anomalous scatterer is present
 Ignore complicated probability distributions

 PHASER/Phasing from molecular replacement: Airlie McCoy noted that there are two elements
to consider: algorithms (computational units) and the pipeline (automation). With PHASER the
interest is in improving the algorithms to push the boundaries and deal with difficult cases – better
algorithms means better solutions (less need to consider multiple potential solutions, or cases
where there are no solutions). Better automation allows more possibilities to be explored.
Notes that PHASER has 9 distinct modes of operation for MR. Input to the program is via an
“input object” that offers options of keyworded input for users, and direct input from Python
scripting layer for developers.
PHASER has “internal” & “external” archives for data transfer. Internal archives include:

 Results from rotation function with or without known parts of the structure
 Results of the translation function

External archives include:

“Automation Standards & Frameworks”: workshop report

7

 MTZ file containing phases and map coefficients
 PDB file with coordinates

Airlie commented that the results from different MR programs are not interchangeable (the results
are inextricably linked with the algorithm used).

2.2.3 Phase information to refined model

Key points from the presentations:

 Model building & ARP/wARP: Victor Lamzin observed that there are the following four
functional blocks:

 Chain tracing
 Ligand building
 Helix search
 Solvent structure

The first of these is the main application of ARP/wARP. The required data are:
 Parameter file
 MTZ file with phases
 Optionally also coordinates (PDB) and/or sequence

 Refinement & automatic molecular replacement: Garib Murshudov outlined what output
information is required by external programs from refinement using REFMAC:

 R-factor before & after each refinement cycle
 Geometry and other internal consistency indicators
 Coefficients for map
 Refined coordinates

He also outlined a wish list of inputs into the refinement procedure (many of which are not yet
used):

 Experimental reflection file (intensities/amplitudes and some other information e.g.
phases – possibly provided in a lower symmetry spacegroup, or even unmerged data)

 Coordinate file
 Bond angles and other chemical information
 End signal – when to terminate the refinement process

For communications/data transfer, the following three areas need to be separated:
 Communications: use XML as a tool to pass information between procedures
 Deposition: the required information should be specified by the deposition centres
 Debugging: the program logfile is ultimately a diagnostic tool for the programmer and is

not the ideal medium for communications.

Discussion & comments:

Victor Lamzin noted that in this part of the pipeline the ultimate goal is “the model”, and that three
things are needed to achieve the goal:

 The input (to be assessed)
 The path (to be chosen)
 The constraint (e.g. quality versus quantity)

“Automation Standards & Frameworks”: workshop report

8

2.3 Toolboxes for Automation

BIOXHIT task 4.7.1 (“Automation in Computation”, and now 5.1.11 in the 2nd implementation plan) is
concerned with gathering the requirements for the provision of a “PX software toolbox for
automation”. The requirements should be informed both by the needs identified by the existing
automation efforts, and by considering the functionality offered by existing toolbox libraries.

This session looked at a number of developments that could be described as toolboxes, and which offer
a wide range of functionality. As well as defining the functions that a generic toolbox should offer the
task is also concerned with how that functionality should be presented (for example the choice of
programming languages).

Presentations were made on the following toolbox/library projects:

 CCP4 Automation Project (Charles Ballard, Daresbury Laboratory)
 The Clipper Library (Paul Emsley, University of York)
 PyWARP (Marouane Ben Jelloul, NKI)
 CCPN (Rasmus Fogh)
 CCTBX (Paul Adams)

Key points from each presentation (NB these are not intended to be summaries of the presentations
themselves – please refer to the presentations themselves for more information):

 CCP4: provides large number of jiffies (FFT, SFALL etc) and “flagship” programs (REFMAC,
MOLREP etc).
Positive aspects include: common delivery to end user on a wide range of supported platforms;
standardised environment and file formats; limited data tracking & “automation-lite” via CCP4i;
strong contribution from clever developers; long term commitment to maintenance and curation of
programs.
Negatives: difficult to extract information from program output; poor interface for scripting.
Forthcoming developments: more marked up output; scripting interfaces to core libraries and jiffy
code; extension to database outside of CCP4i.
Plans: characterise program units (input/output/errors and key values), then abstract to XML and
data model. Provide python wrappers to programs. Possibly move towards use of XML for inter-
process communication, tracking & workflow, deposition, and decision-making.

 Clipper: C++ libraries for X-ray crystallographic computation. Philosophy: extensible,
replaceable, optional (“doctrine of fallibility”), & small (to reduce maintenance overhead). Key
point is that objects have crystallographic knowledge (e.g. symmetry) built into them. Used in
CCP4 molecular graphics, Coot, ARP/wARP.

 PyWARP: provides framework for automation in the form of “controllers” (wrappers around
programs) and “deciders” (make decisions about which program to run & which decision-maker to
ask next, after the program has finished running). Work is in deciding where the decision points
are and what the program modules are. It is possible to start with small modules, and then combine
these to build up into larger modules.
It was suggested that PyWARP could be extended into a general automation toolkit if there is
sufficient interest in using these tools from other projects.

 CCPN: goals are to make a data exchange standard for macromolecular NMR, and to promote
software integration. Start off with an abstract data model expressed in UML (ObjectDomain,
Rational Rose), & provide a standard API (auto-generated code) – support multiple storage
formats, multiple programming languages. Interested in merging X-ray crystallography into this
system.

 CCTBX: philosophy is to provide fundamental crystallographic algorithms required for new
software, and allow them to be used in the context of an interpreted language as the most efficient
way of developing new algorithms & building pipelines.

“Automation Standards & Frameworks”: workshop report

9

The CCTBX module is made up of libtbx (deals with software installation), scitbx (general
scientific applications e.g. ffts and arrays) and cctbx (crystallographic functions e.g. unit cells,
spacegroups, structure factors). Includes functions that can convert between different file formats
automatically. Used for applications within PHENIX (e.g. HySS).
Currently implementing fundamental algorithms for structure refinement and atom selection.

Comments & observations

It seems that the toolboxes presented in the workshop offered three distinct types of functionality:

 Scientific/crystallographic functions (e.g. calculating FFTs)
 Administrative functions (e.g. converting between file formats and conventions)
 Framework functions (e.g. infrastructure for creating pipeline, as in PyWARP)

In all cases there are some desirable features for a toolbox:

 Offer the ability to access the tools both “programmatically” and as functions from within
both compiled (e.g. C/C++) and scripted languages (e.g. Python)

 Toolboxes shift some of the maintenance burden away from the core project onto the toolbox
library – so there needs to be a commitment from the toolbox provider that it will be
maintained and supported in the long term

 Toolboxes should adhere to available standards

Some analyses of the pipeline efforts presented at the meeting are given in Appendix B of this report;
however these were not discussed at the meeting.

“Automation Standards & Frameworks”: workshop report

10

3. Conclusions and Actions

3.1 Key points

This workshop was successful in bring together many of the major European players in the automation
of structure determination software, and beginning a dialogue between software developers about the
role of standards in automation projects.

Standardisation of the information that is exchanged between the key computational units used in
automation projects has some clear benefits:

 Ensures that the programs are being used in the optimal way, i.e.
o Programs are provided with the correct input
o The output is interpreted and acted upon correctly

 Makes extracting key values from program output less difficult (and protects from changes in
logfile formats)

 Provides a mechanism for validating input and output
 Avoids confusion over different quantities which have been given the same name (for example

different programs calculate different R-factors), and the same quantity which can be
expressed in different ways (for example spacegroup names)

 Makes it easier to integrate programs into pipelines (as the interfaces are well defined)

The immediate actions from the meeting (in section 3.2.1) focus on collecting standardised abstract
descriptions (already used e.g. in CRANK) that can be used in this way. The abstract descriptions can
initially be expressed in XML, but could ultimately be used to generate language-specific wrappers for
the programs. It is also hoped that the minimum generic parameters can be identified as part of this
process.

The longer-term actions from the meeting (in section 3.2.2) focus on ways to create new connectivity
within the structure determination pipeline, and particularly between the data collection/processing and
the other components that are further “downstream”. This task ultimately falls within the remit of
Section 4 of the BIOXHIT project.

3.2 Actions from the meeting

3.2.1 Immediate Actions

This meeting identified a number of areas where standardisation would be beneficial in enabling
computational units to be able to be used more easily within existing and future automation efforts, by
having more formal definitions of program function, inputs and outputs.

We note that de facto standards must already exist for a number of programs as a result of active
ongoing collaborations between their authors (for example, REFMAC and ARP/wARP). Other
information must already exist in some form in current automation projects (for example, hard coded in
scripts).

An agreed action from this meeting was for Charles Ballard (CCP4) and Avi Naim (EBI) to collect the
following information from program authors and pipeline developers, for the key computational units
used in the pipelines:

 Program inputs
o Files & input parameters
o Plus annotation (description of meanings, formats etc)

 Program outputs
o Files and output parameters, with annotation (as for inputs)
o Diagnostics associated with output:

“Automation Standards & Frameworks”: workshop report

11

 What (range of) values (or trends) indicate that the program function was
successful?

 What values indicate that there is a problem
 Characterise problems and suggest possible corrective actions

It is possible that multiple descriptions may be needed for each program, where that program is capable
of multiple functions, for example in the case of PHASER – as Gerard Bricogne suggested, this will
move away from thinking in terms of “programs” and towards thinking about what they do.

Once these descriptions have been gathered they will be standardised into some form of XML and
made available to the user community.

3.2.2 Longer-term actions

Gerard Bricogne observed that there is a significant overlap between the standards being developed in
BIOXHIT Section 5, and the developments planned in Section 4 (which focuses on “Data Processing
and Structure Determination”).

The main determining elements for plans for the next year are:

 Growth of the DNA project as a natural “nucleation point” for a series of enhancements
towards smart data collection

 Success of further integration efforts providing criteria for decision-making during data
collection (e.g. Auto-Rickshaw)

 Growing awareness of specific requirements for data exchange standards

The main directions are then:

 Contribute to extending DNA towards
 Multiple wavelengths
 Multiple passes
 Inverse beam for single axis goniometers
 A first set of κ goniometry capabilities

 Recognise & extend data exchange with and within pipelines according to the agreed
standards, concurrently with the progressive definition & implementation of these standards
across the other sections & other projects.

3.3 Other issues

A number of issues were raised during the presentations and subsequent discussions that are not within
the scope of the workshop, but which are mentioned here for future reference.

 Dependencies: many programs depend on external libraries, and pipelines depend on external
software packages. Dependencies are useful as they can reduce maintenance and development
overheads, however changes to these dependencies can also have a detrimental impact on the
programs and pipelines that use them.

 Acknowledgement: to a large extent the pipelines rely on the excellent “third-party” software that
is running underneath them, however as automation becomes more successful these programs will
be increasingly hidden from the end user. How do we ensure that the authors of these programs
receive due recognition?

 Licensing: institutions are increasingly keen to commercialise software and this means the
placement of tighter licensing restrictions that affect how the programs may be used within
automated pipelines. Will this make the construction of effective pipelines impractical?

“Automation Standards & Frameworks”: workshop report

12

Appendix A: Glossary

In putting together this workshop we found that we needed terminology to express some of the
concepts that we encountered. This glossary is our attempt to define what these terms mean.

 Computational unit: any program, script, library function etc that is invoked from within an
automated pipeline in order to perform some crystallographic task (for example, generating an
FFT, locating heavy atoms or refining atomic coordinates).

 Functional block: a conceptual unit that has a set of defined inputs and a corresponding set of
outputs. A functional block could be the operation of a single program or of a section of pipeline.
A functional block could itself be made up of other smaller functional blocks.

 Jiffy: a utility program or function to perform a basic operation such as data format conversions
(e.g. between file formats or coordinate conventions). (From the CCP4 manual: “̀Jiffy' has been
adopted in this community to mean a small utility program c.f., mainstream jargon use as a unit of
time.”)

 Pipeline: refers to the automated processes that run several components in an automatic fashion. It
is not accurate to speak of these as “pipelines” (a term that implies a purely linear flow), as the
processes using include looping and feedback. However this term has now achieved common
currency and it is in this sense that the word pipeline is used here.

“Automation Standards & Frameworks”: workshop report

13

Appendix B: Analyses of automation developments

This appendix offers summaries of the information supplied by the pipeline developers in the proforma
descriptions.

B.1 Programming languages

Table 2 below lists the main programming languages used in the automation projects discussed at this
meeting. Some projects use more than one language. This is not a definitive list.

Language Number
of projects

Pipelines

Python 4 PyWARP/CS2, PHENIX, CRANK, Processor.py
Shell 3 AutoSHARP, Auto-Rickshaw, CRANK
C/C++ 3 PHENIX, CRANK, Processor.py
Fortran 3 AutoSHARP (jiffies), PHENIX, CRANK
Perl 2 AutoSHARP, Auto-Rickshaw (GUI)
Tcl 1 CRANK
Java 1 Auto-Rickshaw (GUI)
Javascript 1 AutoSHARP (GUI)
Scheme 1 CHART

Table 2: Programming languages used in pipeline projects

B.2 Jiffy functions

Table 3 below groups the jiffy functions (as described in the proforma descriptions) into broad classes,
with examples.

Class of function Example jiffies from pipelines
Processing & analysing
program output

 MLPHARE logfile analyser (CHART)
 Convert program output to XML (CRANK)

Querying/extracting
information from formatted
data files

 Extract information from MTZ, SCALEPACK & CCP4 map
files (AutoSHARP)

 Extracting information from reflection files (CRANK,
Processor.py)

Format/convention
conversions

 Convert bewteen asymmetric unit conventions (AutoSHARP)
 Switching hand (AutoSHARP)
 Mapmask (pyWARP)
 Convert between reflection file formats (Processor.py)

Data manipulation SORTMTZ, MTZUTILS, REBATCH, REINDEX, CAD
(Processor.py)

 MAPMAN (Auto-Rickshaw)
Interactions with remote
services

 Run BLAST (pyWARP)
 Fetch PDB file from internet database (pyWARP)

Basic crystallographic
operations

 Peak picking (AutoSHARP)
 Solvent content analysis (AutoSHARP)
 Determine most likely number of molecules in ASU

(Processor.py)

Table 3: Classes of jiffy functions used in pipelines

“Automation Standards & Frameworks”: workshop report

14

B.3 Major programs

The table below lists the major crystallographic programs used in the pipelines, as described in the
proforma descriptions. This is not a definitive list.

Pipeline Programs
Processor.py MOSFLM, SCALA, TRUNCATE, LABELIT, BEST
AutoSHARP SHARP, SOLOMON, ARP/wARP
CHART SHELXD, MLPHARE
PyWARP/CS2 REFMAC, FFT, ARP/wARP, PHASER
PHENIX PHASER, SOLVE, RESOLVE, TEXTAL
Auto-Rickshaw SHELXC/D/E, MLPHARE, NANTMRF, BP3, SHARP, DM,

RESOLVE, ESSENS, ARP/wARP
CRANK CRUNCH2, BP3, SOLOMON, SHELXC/D/E, DM

Table 4: Major programs used in pipeline projects

