
Ms 5.2.5: Identify items for knowledge base schema/De 5.3.5: Implementation of knowledge base schema

 1

LHSG-CT-2003-503420

BioXHIT

A European integrated project to provide a highly effective
technology platform for Structural Genomics.

Life Sciences, Genomics and Biotechnology for Health

WP5: Ms5.2.5 Identify items for incorporation into knowledge base database schema

De5.2.8 Implementation of knowledge base schema

Due date of deliverable: 31.06.2007

Actual submission date: 20.07.2007

Start date of project: 1.1.2004 Duration: 60 months

Organisation name of lead contractor for this deliverable: CCLRC-CCP4

Daresbury Laboratory, Warrington WA4 4AD UK Author Peter Briggs

Ms 5.2.5: Identify items for knowledge base schema/De 5.3.5: Implementation of knowledge base schema

 2

Implementation of the Knowledge Base Schema
(BIOXHIT milestone 5.2.5 and deliverable 5.2.8)

Peter Briggs, CCP4

1 Introduction

This report describes the demonstration implementation of the dbCCP4i “knowledge
base” database.

The knowledge base is intended to contain crystallographic data that is general to a
project and that is not application specific. The knowledge database will be modelled
using SQL and implemented in an SQLite database within the dbCCP4i system. Our
previous attempt at producing an initial database model for crystallographic data was
not successful but taught us some key lessons about how to proceed with a second
version:

1. Initially try to only model a relatively small amount of data
2. Ensure that you have a working implementation

The demonstration application allows to demonstrate the application of the SQLite
technology and to establish mechanisms for reading, writing and updating the
knowledge base data. It should also demonstrate the use of the knowledge base
infrastructure in a real (but non-critical) application.

The first section deals with identifying crystallographic data items that should be
incorporated into the demonstration schema (milestone 5.2.5). The second section
describes the details of the demonstration database schema and the implementation
of the schema in the database handler dbCCP4i.

Ms 5.2.5: Identify items for knowledge base schema/De 5.3.5: Implementation of knowledge base schema

 3

2 Milestone 5.2.5: Identification of the Demonstration
Knowledge Base Content

The crystallographic data used in the CCP4i “MLPHARE” task was selected as the
test case for a demonstration knowledge base implementation. This section
describes the data that was identified from this task to be stored in the demonstration
database.

2.1 Background to the CCP4i MLPHARE task

The MLPHARE task in CCP4i is used to refine the attributes of heavy atoms in
protein derivatives, and/or anomalous scatterers. Within the task there are a number
of data items that need to be set by the user before it can be run, including:

• Name of an MTZ file holding the reflection data to refine against

• Whether the data includes anomalous scattering information

• Definitions of each dataset (corresponding to heavy atom derivatives and/or
wavelengths)

Each dataset has a number of attributes:

• A user-specified name or title

• A set of associated column labels from the MTZ file to indicate which column
contains the data for mean structure amplitudes and anomalous differences

• A set of one or more associated heavy atom definitions

MLPHARE’s algorithm assumes that one of the datasets corresponds to the “native”
protein, which is the normal situation when performing a multiple isomorphous
replacement (MIR) experiment. MLPHARE can also be used to refine heavy atom
positions for multiwavelength anomalous diffraction (MAD) experiments, in which
case a “pseudo-MIR” approach is used in which one of the datasets must be
assigned as the “native” (even though this is meaningless for MAD data).

The heavy atoms can be defined en masse in a single file in CCP4i’s “.ha” format, or
can be explicitly defined within the interface by the user. The associated data items
are:

• The atom type (which must be a valid atom type as defined in the CCP4
scattering library)

• Fractional three-dimensional coordinates x, y, z

• A B-factor

• Occupancy

• Anomalous occupancy

• Optionally, anisotropic B values (set of 6 values)

• Whether the atom is considered to be “in use”

An example of the MLPHARE task interface window is shown in figure 1, with the key
data entry areas highlighted in red and captioned.

Ms 5.2.5: Identify items for knowledge base schema/De 5.3.5: Implementation of knowledge base schema

 4

Figure 1: Example of the MLPHARE task interface with the relevant data entry points
highlighted

2.2 Outline of application usage of the demonstration
knowledge base

The demonstration application will allow users to enter and edit the general
information about the datasets from their experiment into the knowledge base for the
current project. When the MLPHARE interface is started there will be an option to
populate the entry fields directly from the knowledge base. There will also need to be
a way of updating the knowledge base from the output of the MLPHARE run.

Ms 5.2.5: Identify items for knowledge base schema/De 5.3.5: Implementation of knowledge base schema

 5

The practical steps needed to achieve this are:

• We need to analyse the data that we wish to store in order to define them
and their relationships

• We need to organise the data items into a formal knowledge base SQL
schema

• We need to implement the SQL schema in the dbCCP4i and provide a Tcl
API to allow interactions with the data

• We need to provide a CCP4i interface to enter, review and edit the data in
the knowledge base

• We need to provide a mechanism within the MLPHARE interface to populate
the fields directly from the knowledge base, with the user only having to
select the names of the datasets that have already been defined

• We need to provide a mechanism to allow update of a subset of the
knowledge base data from a run of MLPHARE

These steps will inform the design and implementation of the appropriate commands
for accessing the data from within the database system.

2.3 Data to store in the demonstration Knowledge Base

The following tables outline the essential data that we would need to store in order to
provide the input for the MLPHARE task interface. There are two tables: the dataset
table, which holds the “fixed” data derived from the diffraction experiment, and the
heavy atom substructure table, which holds references to multiple heavy atom
substructures that are generated and refined over multiple runs of MLPHARE.

2.3.1 Dataset Table

Each line in the dataset table describes the reflection data and related parameters
derived from a diffraction experiment, and should contain the following data items:

Data item Description Details
Dataset id A unique identifier within the

table.
Arbitrary unique id (used
internally in the database)

Dataset name An identifier for the dataset
corresponding to the “derivative
name” in the MLPHARE
interface.

String of text
One per dataset
Compulsory
Dataset names must be
unique within the project,
since these will be used by
the user to identify and
distinguish different
datasets (for example
when choosing a dataset
from a menu)
MTZ names can be up to
64 characters long

MTZ file project The name of a project alias
indicating where the source MTZ
file that holds the reflection data
for the dataset can be found.

String of text
One per dataset
Compulsory

Ms 5.2.5: Identify items for knowledge base schema/De 5.3.5: Implementation of knowledge base schema

 6

Can be blank or “FULL_PATH”,
in which case the “MTZ
filename” must be a full path.

MTZ filename The name of the source MTZ file
that holds the reflection data for
the dataset.
This name is combined with the
“MTZ file project” to generate
the full path name – so if the
project alias is blank or
“FULL_PATH” then this must be
a full path.

Filename/path
One per dataset
Compulsory
Full filenames can
sometimes be very long,
so this should be able to
take at least 200
characters.

Fmean MTZ column label
Indicates the column that holds
the mean structure factors

Sig(Fmean) MTZ column label
Indicates the column with
sigmas corresponding to the
Fmean values

Dano MTZ column label with
anomalous difference data

Sig(Dano) MTZ column label with the
sigmas for the anomalous
difference data

Labels are strings of text
One of each label per
dataset.

Fmean and Sig(Fmean)
are compulsory.
Dano and Sig(Dano) are
optional, but needed for
anomalous data.

In MTZ files column labels
can be up to 30 characters

MTZ crystal name The name of the “crystal” that
the data belong to in the MTZ
file.

MTZ dataset name The name of the “dataset” that
the data belong to in the MTZ
file.

Optional.
If supplied then these
must all be consistent with
the data in the MTZ file.
For now they can be used
in the data harvesting.
64 character limit for each

Current HA
substructure

The identifier of an entry in the
heavy atom substructure data
table (see below) indicating the
current HA substructure
associated with this dataset.

Either blank, or a “HA id”
from the heavy atom
substructure data table,
below.

2.3.2 Heavy atom substructure data table

For the context that MLPHARE is used in, the heavy atom substructure data are not
fixed inputs but are refined over several runs of the program. As MLPHARE is run
and the data is refined, the heavy atom data will also need to be updated.

To simplify this for the initial version, the data for each heavy atom substructure will
be stored in MLPHARE’s HA formatted files. The demonstration knowledge base
should be able to store any number of heavy atom substructures, and any number
should be able to be associated with a particular dataset. As the refinement
proceeds, new heavy atom substructures can be added to the table along with the
job number (if relevant) which generated the data.

Each line of the heavy atom substructure data table should store the following data
items:

Ms 5.2.5: Identify items for knowledge base schema/De 5.3.5: Implementation of knowledge base schema

 7

Data item Description Details
HA id A unique identifier within the

table.
Arbitrary unique id (used
internally in the database)

HA file project The name of a project alias
indicating where the file that
holds heavy atom
substructure data.
Can be blank or
“FULL_PATH”, in which case
the “HA filename” must be a
full path.

String of text
Compulsory.

HA filename Name of the file containing
the data for the current heavy
atom substructure, in
CCP4i’s .ha format.
This name is combined with
the “HA file project” to
generate the full path name –
so if the project alias is blank
or “FULL_PATH” then this
must be a full path.

Filename/path
Compulsory.
Full file names can be
sometimes be quite long, so
this should be able to take at
least 200 characters.

Job number The number of a job in the
tracking database from which
this file was generated.

Optional. Job numbers can
be integers or “x.y”, where y
indicates a subjob of job x.

Dataset id Id of the dataset that this HA
substructure is associated
with.

The dataset id will
correspond to one of the
identifiers defined in the
preceding table.

Note that more than one
heavy atom substructure can
be assigned with the same
dataset id – this does not
have to be unique.

2.3.3 Possible Extensions to the Demonstration Knowledge Base

The following additional data could be stored for each dataset and might be useful in
tasks other than MLPHARE:

Data item Description Details
F(+) MTZ column label for structure

factors associated with hkl
reflections

Sig(F(+)) MTZ column label with sigmas for
F(+) values

F(-) MTZ column label for structure
factors associated with Friedel
mates –h-k-l

Sig(F(-)) MTZ column label with sigmas for
F(-) values

Labels are strings of text
One of each label per
dataset.
F(+) and F(-) data represent
the same information as
Fmean and Dano. So Fmean
etc could be derived
automatically from this data.

Crystal cell Set of cell parameters a, b, c,
�

,
�

, �

Cell lengths in Angstroms, cell
angles in degrees.
One set of parameters per dataset.

Spacegroup Name of the spacegroup.

All these are optional.

If supplied then these must
all be consistent with the data
in the MTZ file.

Ms 5.2.5: Identify items for knowledge base schema/De 5.3.5: Implementation of knowledge base schema

 8

One spacegroup name per dataset.
Wavelength The wavelength of radiation that the

diffraction experiment was
conducted at.
Units are Angstroms

Fprime Anomalous scattering factor f’ for
the heavy atom type in this dataset
at the given wavelength

Fdoubleprime Anomalous scattering factor f’’ for
the heavy atom type in this dataset
at the given wavelength

Also, rather than store the heavy atom substructure as a “blob” of data in a file, it
might be useful at a later stage to be able to store the individual data items
associated with each putative heavy atom. A heavy atom substructure could then be
defined as an arbitrary collection of heavy atom records draw from this list.

Although desirable, these extensions would also add an extra level of complexity to
the implementation of the demonstration knowledge base that would be unhelpful at
this initial stage. They should therefore be relegated to a later stage of the project.

Ms 5.2.5: Identify items for knowledge base schema/De 5.3.5: Implementation of knowledge base schema

 9

3 Deliverable 5.2.8: Implementation of the
Demonstration Knowledge Base

3.1 Introduction

The implementation of the knowledge base consists of a number of parts:

• An SQL schema describing the knowledge base content

• Functions in the database handler to interact with the SQL schema which are
exposed via the handler API

• Functions in the client APIs that allow the functions in the handler to be
accessed from application programs.

Each of these is described in the following sections.

3.2 Implementation of the demonstration SQL schema

Based on the data items identified for the MLPHARE task the following schema has
been implemented:

CREATE TABLE IF NOT EXISTS Dataset (

Dataset_Id INTEGER primary key,
DatasetName VARCHAR(64) unique not null,
MTZfileProject VARCHAR(64) not null,
MTZfileName VARCHAR(200) not null,
Fmean VARCHAR(30) not null,
SigFmean VARCHAR(30) not null,
Dano VARCHAR(30),
SigDano VARCHAR(30),
MTZCrystalName VARCHAR(64),
MTZDatasetName VARCHAR(64),
CurrentHA INTEGER);

CREATE TABLE IF NOT EXISTS HA (

HA_Id INTEGER primary key,
HAfileProject VARCHAR(64) not null,
HAfileName VARCHAR(200) not null,
JobNumber VARCHAR(10),
DatasetId INTEGER);

These two tables map onto the data structures described in the earlier section.

3.3 Implementation of the Handler API Functions for the
Schema

A set of commands within the database handler need to be implemented in order to
allow the data in the schema to be accessed and manipulated.

Two ways of implementing the functions were considered:

• Specific functions for accessing each of the tables and data items explicitly, or

• Generic functions for accessing arbitrary tables and data item access

Ms 5.2.5: Identify items for knowledge base schema/De 5.3.5: Implementation of knowledge base schema

 10

Specific functions would make for a very transparent handler API, but would require
more work if the schema changed (as there would be more functions to update).
Generic functions would not be so transparent but would allow for more flexibility in
modifying the underlying schema.

Since the schema is a demonstration implementation it was decided that
implementing the generic functions was the best choice. The functions are:

Function Description Usage
NewTableRecord Creates and populates new record

(=row) in a table for the specified
project. Returns the id (=table primary
key) for the new record.

NewTableRecord <project>
<tablename> <item> <value>
[<item> <ivalue>…]

GetAllTableRecords Return the values stored in all records
in a specified table, for a set of named
data items.

GetAllTableRecords
<project> <tablename> <list-
of-data-items>

GetTablePrimaryKey Return one or more record ids
(=primary keys), based on some SQL
condition. Used to acquire the id of a
record to be used in other operations.

GetTablePrimaryKey
<project> <tablename>
<condition>

DeleteTableRecord Remove a record (=row) from the
specified table, based on the id
(=primary key) of the record.

DeleteTableRecord <project>
<tablename> <id>

DeleteTableRecords Remove several records from the
specified table, based on some SQL
condition. Used for deleting records
from one table that link to a record in
another table.

DeleteTableRecords
<project> <tablename>
<condition>

GetTableData Fetch the value of a data item for a
specified record in a table.

GetTableData <project>
<tablename> <id> <item>

SetTableData Update the value of a data item for a
specified record in a table.

SetTableData <project>
<tablename> <id> <item>
<newvalue>

These are used to build the client API commands described in the following section.

3.4 Implementation of the demonstration Client API
Functions

This section first describes how we expect the data in the knowledge base will be
accessed, as this informs the client API that the client applications will need, and
then the actual commands and usage model that have been implemented.

3.4.1 Abstract Usage Model

Initially the user will need to populate the knowledge base tables with information
about their experimental datasets. Since this is the same data as they would need to
enter into the MLPHARE interface, this doesn’t necessarily entail more work than
before (although it does require the creation of a new dedicated interface for initially
entering the data).

Each dataset that is created can also optionally have an initial heavy atom
substructure file associated with it, however realistically the initial heavy atom
substructure data will come from running a program such as SHELX later on in the
process. The data entry interface will therefore need to provide options for updating

Ms 5.2.5: Identify items for knowledge base schema/De 5.3.5: Implementation of knowledge base schema

 11

the state of the knowledge base, and possibly also a mechanism for translating the
heavy atom substructure data from some other format into a HA format file.

When the user comes to use the MLPHARE interface they will be given the option to
use data that they have previously entered into the knowledge base. The MLPHARE
interface will give them the option of selecting which of the stored datasets they wish
to use simply by selecting the names of the datasets.

Once the MLPHARE task has run, the outputs should include an updated heavy
atom substructure in a .ha format file (one per dataset). A reference to this new file
can automatically be added to the heavy atom structure table in the knowledge base
along with the job id number and a reference to the appropriate line of the dataset
table. The HA id number in the “Current HA substructure” data item in the dataset
table should also be updated to point to the new substructure line.

3.4.2 Client API Implementation

The client API functions expose the functions in the handler API (previous section) to
the client application that wishes to store or retrieve data from the database.

In the case of the demonstration knowledge base, two sets of commands have been
implemented:

• Generic commands which map directly onto the generic table functions in the
handler API, and

• Specific commands for interacting with the dataset and heavy atom data in
the demonstration knowledge base which are built using the generic API
commands.

It was also decided initially to only implement the functions in the Tcl client API,
rather than in both the Tcl and Python APIs.

The generic commands are:

Generic API command Description
NewTableRecord See handler API equivalent
DeleteTableRecord See handler API equivalent
DeleteTableRecords See handler API equivalent
SetTableData See handler API equivalent
GetTableData See handler API equivalent
GetAllTableData See handler API equivalent
GetTableRecords See handler API equivalent
GetTablePrimaryKey See handler API equivalent

The specific commands implemented using these are:

Specific API command Description
DefineDataset Make a new dataset record with values set for each data

item, e.g.:

DefineDatabase <project> <DatasetName> <MTZfile>
<Fmean> <SigFmean> -dano <Dano> <SigDano> -mtz
<MTZCrystalName> <MTZDatasetName>

Note: since a HA substructure cannot be defined for a

Ms 5.2.5: Identify items for knowledge base schema/De 5.3.5: Implementation of knowledge base schema

 12

dataset before the dataset itself is defined, the CurrentHA
data item would need to be updated using the
UpdateHAForDataset command.

ListDatasets Return a list of the DatasetNames currently in the
knowledge base e.g.:
ListDatasets <project>

DeleteDataset Remove a dataset previously defined; would also delete the
records for any associated HA substructures in the HA table
e.g.:
DeleteDataset <project> <DatasetName>

GetDatasetId Return the id for a dataset in the Dataset table, based on
matching the dataset name, e.g.:

GetDatasetId <project> <DatasetName>

GetDatasetAttribute Return the value of a specified data item in the Dataset
table for a particular dataset, or of the current HA
substructure associated with the dataset, e.g.:

GetDatasetAttribute <project> <DatasetName>
<itemName>

where <itemName> is one of the items defined in the
Dataset table, or in the HA table. If it is a HA table attribute
then it refers to the value for the HA substructure that is the
CurrentHA substructure.

GetHAAttribute Return the value of a specified data item in the HA table,
e.g.:
GetHAAttribute <project> <HA_Id> <itemName>

NewHASubstructure Defines a new HA substructure, with values set for each
data item, e.g.:
NewHASubstructure <project> <HAfile> <DatasetName> -
job <JobNumber>

ListDatasetHASubstructures Return a list of the HA substructure ids associated with a
particular dataset, e.g.:
ListDatasetHASubstructures <project> <DatasetName>

UpdateHAForDataset Update CurrentHA for a specified dataset e.g.:
UpdateCurrentHA <project> <DatasetName> <HA_Id>

3.4.3 Actual Usage Model

The following describes the actual usage of the API commands described previously
in an application setting:

1. DefineDataset would be invoked each time the user added a new dataset to
the knowledge base. NewHASubstructure would be invoked followed by
UpdateHAForDataset to define an initial set of associated heavy atoms, and
to set this as the current HA substructure for the new dataset.

2. ListDatasets would provide data to populate menus for selecting which

dataset to use for each “derivative” in the MLPHARE interface.
GetDatasetAttribute would then be used to acquire the data for the
appropriate dataset in order to populate the fields in the interface.

3. After each run of MLPHARE, NewHASubstructure would be invoked to record

the refined substructures output from each job. Possibly

Ms 5.2.5: Identify items for knowledge base schema/De 5.3.5: Implementation of knowledge base schema

 13

UpdateHAForDataset would also be called, to automatically update the
current HA dataset associated with the dataset.

4. Any other mechanism for updating the current heavy atom substructure would
need to use ListDatasetHAStructures to provide a list of possible HA files for
a particular dataset, plus GetHAAttribute to acquire additional information
(e.g. the job number). UpdateHAForDataset would be invoked to perform any
necessary update to the current HA substructure associated with it.

Availability

The functionality described above is implemented in version 0.3 of the database
handler system, and is available for download from the CCP4 BIOXHIT web area:

http://www.ccp4.ac.uk/projects/bioxhit_public/

The functionality will also be included in the version 6.1 release of the CCP4 software
suite:

http://www.ccp4.ac.uk/download.php

