
De 5.2.5: Specification of version 1 of the Project Tracking Database Design

 1

LHSG-CT-2003-503420

BioXHIT

A European integrated project to provide a highly effective
technology platform for Structural Genomics.

Life Sciences, Genomics and Biotechnology for Health

WP5: De5.2.5 Specification of version 1 of the Project Tracking Database Design

Due date of deliverable: 31.12.2006

Actual submission date: 14.02.2007

Start date of project: 1.1.2004 Duration: 60 months

Organisation name of lead contractor for this deliverable: CCP4-CCLRC

Daresbury Laboratory, Warrington, Cheshire WA4 4AD, UK.

Author Peter Briggs and Wanjuan Yang

De 5.2.5: Specification of version 1 of the Project Tracking Database Design

 2

Specification of Version 1 of the Project

Tracking Database Design

1 Introduction

This document outlines the specification of the CCP4i project tracking
database. It is based on the project database used in CCP4i and is geared
towards tracking runs of software initiated through CCP4i. Later revisions
of the schema will be more generic to allow a better description of non-
CCP4i initiated software runs.

The sections below contain the following information: section 2 gives an
abstract description of the tracking database schema; sections 3 and 4
describe attempts at concrete implementations of the schema in CCP4i def
file format and SQL tables respectively.

2 Description of the tracking database schema

2.1 Overview

CCP4i divides the user's work into projects. A user can have as many
projects as they wish. The schematic diagram below gives a picture of
how the data is imagined in a simple hierarchy.

2.2 Projects

A project in this model consists very simply of a file directory or folder
plus an associated job database which is used to store information about
program runs. There is no formal definition of what constitutes a project
beyond this, and users are free to define new projects to subdivide their
work and organise their data as they wish.

A project has the following attributes:

• A project name (also called an alias)

De 5.2.5: Specification of version 1 of the Project Tracking Database Design

 3

• An associated project directory
• A database subdirectory with the project directory (conventionally

called CCP4_DATABASE)
• A job database

The job database contains job records. A job is a run of a software
application or task, which can be a single program or a script that runs
many programs in some sequence. The data items associated with each
each job record are given in the tables below in the section on Job
Records.

In addition to none or more job records, the job database also has a data
item called NJOBS. This is actually the current highest job id number in
the database, and not necessarily the total number of jobs.

2.3 Default Directories ("Def Dirs")

A default directory (also called a "def dir") has name (also called an
"alias") and an associated directory, but no database subdirectory or job
database.

A normal use of a def dir is as a convenient way to refer to a directory
containing source data.

2.4 Job records

A job represents the run of a software application. Typically this is a task
in CCP4i, however in principle it could be a run of any program or script.
The following sections describe the data that are with each job in the
schema.

2.4.1 Data associated with job records

Each job has a number of associated data items that are described in the
following table.

Name Description Type
JOB_ID The job number is a unique integer

value assigned to each job in the

project's job database, starting from
1 and increasing monotonically. It is
used as the primary key for
identifying records within the job

database.

Positive
integer

DATE

The date of the last change to the

job record, in "epoch" format i.e. the
number of seconds that have
elapsed since the system's

(arbitrary) start time.

Date

(positive
integer)

TASKNAME

The name of the CCP4i task or other

application which created the job
when it ran.

Text (no

whitespace)

De 5.2.5: Specification of version 1 of the Project Tracking Database Design

 4

STATUS

The current state of the job,
indicating that it is either in

progress, or the broad condition
under which it terminated. The
status of a job indicates the state of
the job process, rather than

indicating the quality of the output.
See below for the possible values
and their meanings.

Enumerated
type

TITLE A descriptive user-defined title for
the job run. This provides simple
annotation of the job records to help
to distinguish between different runs

of the same task.

Text

LOGFILE

The name of the principle logfile
associated with the job. Only the

filename is specified, the file is
assumed to be held in the project
directory.

Typically CCP4i constructs the logfile
names for a particular job using the
following convention:

[JOB_ID]_[TASKNAME].log

However this is a convention and not

a general requirement for logfile
naming.

Filename

RUNFILE The name of a "control file" that was

used to run the job, for example a
shell script.

It is possible for a job not to have

the RUNFILE set; it currently used
when the user adds the report of a
jobs run from outside CCP4i.

Filename

SCRATCH

The name of the temporary or
"scratch" directory for the job

Directory

INPUT_FILES

A list of the names of files that were

used as input to the job. Items in
the list are separated by whitespace
characters, and can either be
filenames without a path, in which

case they are assumed to reside in
one of the project or def dir
directories (specified in the

INPUT_FILES_DIR), or alternatively
the file may be specified by the full
path.

See section 2.4.3 for details of how
the filenames and directories are
stored and recovered.

List of

filenames

INPUT_FILES_DIR A list of the project or def dir names
corresponding to the locations of the
files in the INPUT_FILES list. Items

in the list are separated by

List of
directory
specifiers

De 5.2.5: Specification of version 1 of the Project Tracking Database Design

 5

whitespace characters.

See section 2.4.3 for details of how
the filenames and directories are
stored and recovered.

INPUT_FILES_STATUS A list of "file status" signifiers for
each file in the INPUT_FILES list.
This is not used and the signifiers
are currently undefined.

List of text

OUTPUT_FILES

A list of the names of files that were
created as output from the job.
Items in the list are separated by

whitespace characters, and can
either be filenames without a path,
in which case they are assumed to
reside in one of the project or def dir

directories (specified in the
OUTPUT_FILES_DIR), or
alternatively the file may be

specified by the full path.

See section 2.4.3 for details of how
the filenames and directories are

stored and recovered.

List of
filenames

OUTPUT_FILES_DIR A list of the project or def dir names
corresponding to the locations of the

files in the OUTPUT_FILES list. Items
in the list are separated by
whitespace characters.

See section 2.4.3 for details of how
the filenames and directories are
stored and recovered.

List of
directory

specifiers

OUTPUT_FILES_STATUS A list of "file status" signifiers for
each file in the OUTPUT_FILES list.
This is not used and the signifiers

are currently undefined.

List of text

PARAMETER_FILE

The name of the CCP4i def-format
file which contains the parameters

and values used to run a CCP4i task.

It is possible for jobs not to have an
associated parameter file, for

example reported jobs.

Filename

NOTEBOOK_FILE The name of an ASCII text file with
free text typically used to store

annotation or notes on the job.

It is possible for jobs not to have an

associated notebook file, as these
files are only created by an
application when adding a new
notebook entry.

Filename

Note that the implementations described in the later sections of this
document do not necessarily conform to this description at present.

De 5.2.5: Specification of version 1 of the Project Tracking Database Design

 6

2.4.2 Job Status Values and Meanings

The table gives the possible values for the STATUS data item in a job
record:

Value Description/meaning
STARTING The job has been registered but the process is not

yet running

RUNNING The job process is currently running on the system

FINISHED The job process terminated without raising any
system errors or non-zero termination status

FAILED The job process terminated with a system error or
with a non-zero termination status

KILLED The user initiated premature termination of the job

process from within CCP4i

ON_HOLD A special status used in auto-testing; the job is
scheduled to begin at a later time, under some

condition determined by CCP4i/client application.

REPORTED The job process ran under some other system and
the user has recorded the details retrospectively

2.4.3 Input and output filename storage and recovery

The information about references to input and output files associated with
jobs are stored in the INPUT_FILES and INPUT_FILES_DIR data items for
input files, and OUTPUT_FILES and OUTPUT_FILES_DIR for output files.

INPUT_FILES is a list of filenames and INPUT_FILES_DIR is a list of
corresponding project or def dir names, so that the i'th project name in
the INPUT_FILES list is associated with the i'th filename in the
INPUT_FILES_DIR. This is the same for the OUTPUT_FILES and
OUTPUT_FILES_DIR lists also.

For files that are stored in a directory that is also a project or def dir,
usually only the name of the file is stored without the leading directory
path, e.g.:

INPUT_FILES: INPUT_FILES_DIR:
toxd.mtz TOXD

The full path is constructed by acquiring the directory path for the project
and then appending the filename, e.g.:

/home/pjx/Projects/toxd/toxd.mtz

For files that are not in a project or def dir directory, the full filename is
recorded in the INPUT_FILES or OUTPUT_FILES list, and the

corresponding name in the ..._DIR entry is given as either FULL_PATH or
as an "empty" entry {}, e.g.:

INPUT_FILES: INPUT_FILES_DIR:

De 5.2.5: Specification of version 1 of the Project Tracking Database Design

 7

/home/pjx/NotAProject/toxd.mtz FULL_PATH

Additionally, references to directories can also be stored. In this case the

filename in the INPUT_FILES or OUTPUT_FILES list is an "empty" entry {}
and the corresponding entry in the ..._DIR list is the full directory path,
e.g.:

INPUT_FILES: INPUT_FILES_DIR:
{} /home/pjx/arbitrary/dir/

3 Implementation in CCP4i def file format

The above data model has been implemented in CCP4i and in dbCCP4i in
the CCP4i def file format.

3.1 Overview of the CCP4i def file format

Def files use a simple flat file data storage format in ASCII text. A line in a
def file will be one of:

• A CCP4i header line, beginning with the text #CCP4I,
• A parameter-value pair,
• A parameter-type-value triplet (nb in any given file there will either

pairs or triplets for all parameters - these two forms are not
normally mixed),

• An "include" directive, of the form @filename (which instructs the

processor to insert the contents of the specified file at this point,
• A comment line, beginning with the hash symbol (#), or
• A blank line, consisting of white space only.

The parameter-value pair lines have the form:

PARAMETER value

The parameter-type-value triplets have the form:

PARAMETER type value

The elements on each line are separated by whitespace. Parameter names
are conventionally uppercased and consist of alphanumeric characters and
underscores only. Values can be arbitrary strings or numbers, however
they must be enclosed in double quotes if they contain whitespace.

(The types are defined in the $CCP4/etc/types.def file distributed with the
CCP4 suite.)

"Indexed" parameters provide structures similar to one and two-
dimensional arrays. An indexed parameter is defined using the "zeroeth"
element:

De 5.2.5: Specification of version 1 of the Project Tracking Database Design

 8

PARAMETER,0

The comma (",") indicates that it is an indexed parameter - the index is
the part after the the comma. Single indexed parameters have the form:

PARAMETER,i

where i is an integer and counts from 1 upwards. Double indexed
parameters have the form:

PARAMETER,i_j

where i and j are both integers and counting up from 1. Note that
although the "zeroeth" element is only singly indexed, it also defines

doubly indexed parameters i.e. it is only necessary to use PARAMETER,0
(not PARAMETER,0_0).

3.2 Project and directory definitions: directories.def

The data defining an individual user's projects and def dirs is stored in a

file called directories.def. The def file "schema" is:

N_PROJECTS _positiveint1 1
PROJECT_ALIAS,0 _text ""
PROJECT_PATH,0 _dir ""
PROJECT_DB,0 _dir ""
PROJECT_ALIAS,1 _text PROJECT
PROJECT_PATH,1 _dir ""
PROJECT_DB,1 _dir ""
N_DEF_DIRS _positiveint1 1
DEF_DIR_PATH,0 _dir ""
DEF_DIR_ALIAS,0 _text ""
DEF_DIR_PATH,1 _dir \$CCP4_SCR
DEF_DIR_ALIAS,1 _text TEMPORARY

(See also $CCP4/ccp4i/etc/directories.def.dist. Note that the file contains
other parameters used by CCP4i for internal purposes, however they are
not part of the database model and so are not described here.)

The table below describes what each of these parameters represents:

Parameter Description
N_PROJECTS Total number of projects defined.

PROJECT_ALIAS,i The name/alias of the i'th project.

PROJECT_PATH,i The directory path of the i'th project.

PROJECT_DB,i The database subdirectory of the i'th

project.

N_DEF_DIRS Total number of def dirs defined.

DEF_DIR_PATH,i The directory path of the i'th def dir.

DEF_DIR_ALIAS,i The name/alias of the i'th def dir.

De 5.2.5: Specification of version 1 of the Project Tracking Database Design

 9

Each user has their own directories.def file, which resides in a
subdirectory in their home area. On UNIX or Linux systems this is
$HOME/.CCP4/unix/directories.def

3.3 Job database: database.def

The database.def file in the project database subdirectory holds the job
database data for that project. The def file "schema" is:

NJOBS _positiveint 0
TASKNAME,0 _text ""
DATE,0 _date ""
STATUS,0 _db_status ""
LOGFILE,0 _log_file ""
RUNFILE,0 _run_file ""
SCRATCH,0 _dir ""
TITLE,0 _text ""
INPUT_FILES,0 _list_of_files ""
INPUT_FILES_DIR,0 _list_of_files ""
INPUT_FILES_STATUS,0 _list_of_text ""
OUTPUT_FILES,0 _list_of_files ""
OUTPUT_FILES_DIR,0 _list_of_files ""
OUTPUT_FILES_STATUS,0 _list_of_text ""

(See also $CCP4/ccp4i/etc/database.def.)

Note that the NJOBS data item is actually the current highest job id

number in the database, and not necessarily the total number of jobs.

Not all data items outlined in the schema are explicitly defined in this
implementation (this is for consistency with CCP4i). The following data
items are implicitly defined:

Implicit Data Item Comments
JOB_ID JOB_ID is not explicitly stored in the database.def file,

it is an implicit property of the job record. For example,
the date for job number 34 is stored in parameter

DATE,34, while the title of job 102 is in TITLE,102.

PARAMETER_FILE Parameter filenames are implicitly constructed using
the following convention:

[JOB_ID]_[TASKNAME].def

and conventionally these files are placed in the
database subdirectory of the project directory.

NOTEBOOK_FILE Notebook filenames are not explicitly stored and are

instead constructed using the following convention:

[JOB_ID]_notebook.def

Conventionally these files are placed in the database
subdirectory of the project directory.

De 5.2.5: Specification of version 1 of the Project Tracking Database Design

 10

4 Implementation in SQL tables

A version of the tracking data model has also been implemented in a set
of linked SQL tables.

4.1 Project tracking SQL schema

The SQL commands for setting up the tables for the database are given
below:

CREATE TABLE Project (ProjectId INTEGER primary key,
 ProjectName VARCHAR(20),
 Owner VARCHAR(45),
 Path VARCHAR(45));

CREATE TABLE Job (jobId INTEGER primary key,
 ProjectId INTEGER,
 Status VARCHAR(45),
 Application VARCHAR(45),
 Taskname VARCHAR(45),
 Title VARCHAR(45),
 LastModified DATETIME,
 LogFile VARCHAR(45),
 ControlFile VARCHAR(45),
 NotebookFile VARCHAR(45));

CREATE TABLE File (FileId INTEGER primary key,
 Name VARCHAR(45),
 Path VARCHAR(45),
 Format VARCHAR(45),
 LastModified DATETIME,
 Note VARCHAR(45));

CREATE TABLE JobFile (JobId INTEGER,
 FileId INTEGER,
 Type VARCHAR(10));

CREATE TABLE JobLink (JobId INTEGER,
 NextJobId INTEGER,
 Note VARCHAR(45),
 Type VARCHAR(45))

These tables and their attributes are described in more detail in the
following subsections.

De 5.2.5: Specification of version 1 of the Project Tracking Database Design

 11

4.1.1 "Project" table

This table describes the user's projects.

Attributes Description Data Type Example
ProjectId A unique positive

integer id number for
this project.

Integer 1, 2, 3, ...

ProjectName The name or alias for

the project. This must
also be unique within
the system.

Varchar RNASE

Owner The name of the owner
of the project.

Varchar "John Smith"

Path The path of the project

directory.

Varchar /home/pjx/myProject

4.1.2 "Job" table

This table describes the jobs that have been run within the system. Note
that all the user's job records are stored in a single "Job" table, with an
attribute to specify which project they belong to.

Attributes Description Data Type Example

JobId

A unique positive integer id
number for this job
(JOB_ID).

Integer 1, 2, 3, ...

ProjectId A number corresponding to
the ProjectId number in the
"Project" table for the project
to which this job belongs.

Integer 1, 2, 3, ...

Status The job status (STATUS) Varchar RUNNING,
FINISHED,
FAILED, ...

LastModified The last modification time of
the job data (DATE)

Timestamp -

Title A short description of the job
(TITLE)

Varchar "Refine first
mr solution
from amore"

Application The name and version of the
application program or
pipeline which ran the job

Varchar "CCP4I",
"HAPPy", ...

Taskname The name of the application-
specific task which was run
in order to generate the job
(TASKNAME)

Varchar "scala",
"refmac5",
...

Logfile The id number of a file in the
"File" table (see below)
corresponding to the logfile

Integer 1, 2, 3, ...

De 5.2.5: Specification of version 1 of the Project Tracking Database Design

 12

for this job (LOGFILE)

ControlFile The id number of a file in the
"File" table corresponding to
the parameter or control file
for the job
(RUNFILE/PARAMETER_FILE)

Integer 1, 2, 3, ...

NotebookFile The id number of a file in the
"File" table corresponding to
the parameter or control file
for the job
(NOTEBOOK_FILE)

Integer 1, 2, 3, ...

4.1.3 "File" table

This table holds references to all the files that are associated with the jobs
and projects. Files are associated with specific jobs via entries in the
"JobFile" table described later on.

Attributes Description Data Type Example

FileId A unique positive
integer id number
for this file.

Integer 1, 2, 3, ...

Name The filename i.e.
the trailing part
without the
directory path.

Varchar toxd.mtz

Path The directory path
for the file.

Varchar /some/directory/location

Format The format of the
file.

Varchar mtz, pdb, ...

LastModified The last
modification time
for the file.

Timestamp -

Note Annotation
attached to the file
(similar to the
"notebook" text for
a job).

Varchar "Deleted"

De 5.2.5: Specification of version 1 of the Project Tracking Database Design

 13

4.1.4 "JobFile" table

This table holds the associations of files with jobs. Each row in the table
links a file to a particular job, as either an input or output file. While a
particular file can only be linked to a single job as an output file, it can be
linked to many jobs as a input file.

Attributes Description Data Type Example
JobId The id number of a job in the

"Job" table, which forms the
first part of the link.

Integer 1, 2, 3, ...

FileId The id number of a file in the
"File" table, which forms the
second part of the link.

Integer 1, 2, 3, ...

Type The character of the
relationship between the job
and the file, i.e. either "input"
or "output".

Varchar Either "input" or
"output" only

4.1.5 "JobLink" table

This table relates two job records together to record some kind of
sequence of jobs. Note that this is not part of the original specification.

Attributes Description Data Type Example
JobId The id number of the job in the

"Job" table which is the first job

in the link.

Integer 1, 2, 3, ...

NextJobId The id number of the job in the
"Job" table which is the second

job in the link.

Integer 1, 2, 3, ...

Note Annotation attached to the link
(similar to the "notebook" text

for a job).

Varchar "Phasing
procedure"

Type The relationship between the two
jobs: either "logical" (the

relationship is due to application
or procedural logic) or "data"
(there is a flow of data, for

example a shared file, between
the jobs).

Varchar Either "logic"
or "data" only

4.2 Differences between the def file and SQL
implementations

The SQL tables describe a centralised database, where all data is held in
the same database (for example, all the user's job records are stored in a
single "Job" table, with an attribute to specify which project they belong
to) whereas the def file implementation describes a distributed database
(all job records and data for one project is kept separate from all others).

De 5.2.5: Specification of version 1 of the Project Tracking Database Design

 14

A distributed database is flexible and relatively robust; the centralised
approach offers the option to easily change associations and draw links
between data and jobs in different projects.

The SQL tables also define explicit links between jobs which do not appear
in the original description, but which are needed for a fuller description of
project history.

Authors

Peter Briggs and Wanjuan Yang

