

LHSG-CT-2003-503420

BioXHIT

A European integrated project to provide a highly effective
technology platform for Structural Genomics.

Life Sciences, Genomics and Biotechnology for Health

WP5.2: De 5.2.3 Specification for Version 1 of the Project Database Handler design

Due date of deliverable: 31.12.2005
Actual submission date: 31.12.2005

Start date of project: 1.1.2004 Duration: 60 months

Organisation name of lead contractor for this deliverable: CCP4/CCLRC
Daresbury Author: Peter Briggs

WP 5.2: Data management and project tracking in structure solution software.
Coordinator Peter Briggs (Partner 10), contributing Partners 1C, 10.

De 5.2.3 Specification for Version 1 of the Project Database Handler design

Software pipelines such as those outlined in Section 4 will require a component to
manage data flow and track project history. This is important in order to make
information from all preceding steps available to software components in the pipeline.
This WP is concerned with the implementation of a project-tracking database, which
can be used within the context of a structure determination software pipeline in order
to:

(i) keep track of progress through the structure solution pipeline
(ii) review progress when the pipeline is running in service mode. The
owner of the project may wish to query progress through the pipeline, for
example a biologist makes a request to the crystallisation service to see
whether protein crystals have yet been obtained
(iii) diagnose problems or failures (particularly important for automated
procedures). For example if a refinement fails, manual intervention may be
required to trace back whether the appropriate model was used in molecular
replacement, or whether there were problems in the data processing
(iv) improve procedures by identifying their strengths and weaknesses

REPORT on the Specification for Version 1 of the Project Data Handler Design

1. Introduction

This report outlines the specification for version 1 of the project database handler,
which is deliverable D 5.2.1. The specification includes details of the three key
components that compromise the full system.

This project aims to provide the following:

• A data store for storing and retrieving the information required by and generated
from the process of determining macromolecular structures using the technique
of X-ray crystallography, from any point after the user has a set of images
obtained from a diffraction experiment. The data store will enable the progress of
the structure determination to be tracked and reviewed.

• A brokering application or "handler" that will mediate interactions between the
data store and any client applications that wish to store or retrieve information.

• Tools for displaying the information held in the data store ("visualisation tools" or
"visualisers")

Not all the requirements have been specified yet. This report therefore outlines the
current specification. Later versions of the system are likely to have revised
specifications for one or more of these components. To this end, the original
specification for the proto-handler is included as an appendix to this report.

2. General Concepts

2.1 Project Database

The project database will ultimately consist of three components:

• Project History/Tracking Database: this will store information about the
progress of the project by recording the information associated with runs of

programs or other applications. The current CCP4i database is a simple
tracking database.

• Project Knowledge Base: this will store information about the project as a
whole, for example data that is known from steps prior to entering the
software pipeline (the type of diffraction experiment performed or the
sequence of the target protein) and data that is gathered as a result of
running software (for example estimates of the solvent content). There is no
project knowledge base equivalent currently implemented within CCP4i.

• Operational Database: this will store "operational" or "working" data - data
objects that are used by software during the lifetime of some part of the
structure solution process. These objects are characterised by being volatile
(i.e. short lifespan) and by the fact that they may not be in universally
recognised formats (e.g. pickled python objects used by a particular
application to store working data).

The three databases are separate but related - as programs are run they may wish to
store operational data, the resulting jobs are stored in the tracking database, and the
output data may be stored in the project information database.

The three databases are illustrated schematically in figure 1 below:

Figure 1: schematic representation of the database components

Issues that need to be resolved include what data needs to be stored, and how. For
example: within CCP4i a project consists of a directory which contains a "database
file" which stores details of each job run, in addition the directory also contains data
files which have been imported or generated during the structure determination
process. To begin with the simplest possible database structure will be implemented.

2.2 Project Database Handler

The project database handler will provide a mechanism for applications (programs
or scripts) to store and recover data from a common place without having to know
about the implementation details of the data storage (i.e. how the data is actually
stored). It will act as a server and handle different client applications accessing a
single database simultaneously, as illustrated schematically in figure 2 below:

Figure 2: schematic of the project database handler

The components shown in figure 2 are:

• The application which can be a program, script or other executable module
• The project data handler which receives requests from the application to

manipulate the data stored in the database(s)
• The project database which stores the data in some storage system

A more realistic illustration of the architecture of these three basic components of the
system and their interactions are represented schematically in figure 3.

The following components will be provided:

• Client API layer: a library of functions for use by application programs to
communicate with the handler (implemented in a number of different
programming languages or otherwise made accessible to them). The client
API is detailed in section 3.3.3.

• Database: a database implemented in some system that is actually used to
store the data (e.g. the current CCP4i "flat file" format, or a mySQL database,
or some other system). The initial database specification is detailed in section
3.3.

• Handler: a program which accepts commands (requests) in a standard
format from external applications which tell it how to manipulate the data
stored in the database, and issues responses to those requests

The handler itself consists of three further components:

• An external communication layer that takes requests received from the
application (and issues responses).

• A layer which verifies the requests and translates them from the external
format into a generic internal format i.e. the generic database API

• A generic database API layer which implements the functionality required to
access the database in a variety of specific database languages - one for
each type of database (mySQL, flat file etc) - which the handler supports.

Figure 3: detailed architecture of the project database system

2.3 Visualisation Tools

Visualisation tools are applications that take the information stored in the data store
and present different views that help the end user to better understand relationships
within that data.
A simple example of a visualisation tool is the job list within CCP4i - this shows some
basic attributes of each job within a project and allows the user to interact with the
database by selecting jobs and then performing operations such as listing and
viewing the associated input and output files, or rerunning the task with the same
parameters.
More sophisticated tools can be envisaged, for example: showing the job list
graphically as a "network diagram", which would make it easier to see pathways
through the structure solution process and understand how the final result was
arrived at.

3. Version 1 Implementation

3.1 Components

There are four components that need to be implemented:

1. Database handler
2. Tracking database schema
3. Client API library to communicate with the handler
4. Basic visualiser

3.2 Version 1 Handler

The handler will not consider security and authentication issues.

3.3 Version 1 Tracking Database

Initially we will use a minimal database as the data store. This can be thought of as
having a hierarchical structure: the database will contain one or more projects, each
of which will contain one or more jobs. Each job can have one or more associated
facts and one or more associated dingbats.

These database elements are described more fully in table 1.

Table 1: Descriptions and attributes of the basic database elements

Database
Element

Description Attributes

Project A collection of jobs that have something in
common, for example steps towards
determining the structure of a single protein.

Project names must be unique.

• project id
(unique)

• creation date
• project name

(unique)

Job A job is an instance of an operation, such as a
run of a program or script.

• job id (unique)
• creation date
• parent project id

Fact A fact is some item of information associated
with a job, for example the solvent content or
cell parameters. Note that facts do not have to
have unique names.

• fact id (unique)
• insertion date
• name
• value
• parent job id

Dingbat A dingbat is storage of some complex object,
for example a pickled python object. Note that
dingbats do not have to have unique names.
Issues:
The database will store dingbats as base64
encoded strings. The application API layer
must transform the input object from the
application into a suitable form before
transmission to the handler for storage. The
application API layer must also perform the
reverse transformed when retrieving the
encoded object from the database.

• dingbat id
(unique)

• insertion date
• name
• description
• type
• value
• parent job id

The relationships between the database elements are represented schematically in
the figure 4 below.

Figure 4: relationships between the database elements

Functions for the handler to interact with this "generic" minimal database are outlined
below in section 3.3.1. The generic minimal database and the generic functions will
initially be implemented in mySQL.

 3.3.1 Generic Database API Functionality

The API to the database within the handler will provide the core functionality required
to manipulate the data outlined above in section 3.3. The API functions are outlined
in tables 2 and 3 below.

Table 2: Functions defining the basic DB API for the handler

Function Description
Example

Implementation

Open a project
Create a new project database (or open
an existing database)

OpenProject project

Create a new
job

Create a new job id within the specified
project and set the creation date
automatically to be the date and time
that the handle was created. Return the
job id.

job_id = NewJob project

Store a fact

Create a new fact for a specified job in
a specified project. The fact will have
name and value attributes specified by
the calling application. The insertion
date for the fact will automatically be set
to the date and time that the new item
was stored.

SetData project job_id
name value

Retrieve a fact

Request the value associated with the
most recent fact stored in a specific
project for a specific job and specific
name. "Most recent" means the fact
with the latest insertion date. Return the
matching value.

value = GetData project
job_id name

Import a
dingbat into the
database

Create a new dingbat for a specified job
in a specified project. The dingbat will
have name, description, type and value
attributes specified by the calling
application. The insertion date for the
dingbat will automatically be set to the
date and time that the new item was
stored.

ImportDingbat project
job_id name description
type value

Retrieve the
description and
type
information of a
dingbat

Fetch the description and type attributes
of a dingbat for a specified job in a
specified project.

description_and_type =
DescribeDingbat project
job_id name

Export a
dingbat from
the database

Fetch the value associated with the
most recent dingbat stored in a specific
project for a specific job and specific
name. "Most recent" means the dingbat
with the latest insertion date. Return the
matching value.

object = ExportDingbat
project job_id name

Delete a dingbat
from the
database

Remove a dingbat and its associated
data from a specific project for a
specific job and specific name.

DeleteDingbat project
job_id name

Table 3: Functions defining the extended DB API for the handler

Function Description Example Implementation

List
projects

Return a list of names of all the projects in
the database.

project_list = ListProjects

List jobs Return a list of job ids in a specified project job_list = ListJobs project

List facts
Return a list of the facts associated with a
specific job in a specific project

fact_list = ListFacts project
job_id

List
dingbats

Return a list of the dingbats associated
with a specific job in a specific project

dingbat_list = ListDingbats
project job_id

3.3.2 External Communication Layer Functionality

These are the commands recognised by the handler when they are received from an
external application. The handler will offer a set of database commands that map
directly onto the functions outlined in the Generic Database API Functionality section
above. It will also offer a set of administrative commands that can be invoked by
the application to perform the tasks outlined in table 4.

Table 4: Administrative functions available within the handler

Function Description Example

Connect to (log
into) the handler

The application provides information that tells the
handler e.g. which user it is operating on behalf of.
This is like e.g. logging into a remote computer and
having to supply username and password
information.

Connect

Disconnect from
(log out of) the
handler

An application which is logged in can terminate the
connection (this is like typing "exit")

Disconnect

Shut down the
server

Tell the handler to terminate all client connections
and then stop running.

Shutdown

The mode of operation that is envisaged is as follows:

• An application connects to the handler and logs in
• The handler listens for a request from the connected application
• When a request is received it verifies the request and acts upon it. The

requests will correspond to one of the commands/functions outlined above:
o A database request is translated from the external API format to the

generic database API format and executed, causing some operation
to be performed on the database, or

o An admin request is executed in an admin layer
• The handler sends back the result of the operation (if appropriate) to the client

application
• The handler listens for the next request and so on

3.3.3 Client API Library Functionality

The client API library is a set of functions that will be provided to applications to
allow them to communicate with the handler.

Communications with the handler will be via a set of commands that the handler
recognises. These commands will be packaged in some protocol that allows the
handler to verify them (for example HTTP). The client API library will provide
commands in different languages that will do the following:

• Open a client socket to the handler
• Issue a specific command recognised by the handler using the appropriate

protocol
• Deal with any response from the handler and pass the results back to the

application level
• Possibly also close the client socket

The client API will also perform any transformations of the data (e.g. base64
encoding/decoding) that are required, and will offer a range of functions that directly
map onto the functions offered by the handler.

3.4 Prototype Visualiser: "Project Data Explorer"

The prototype visualiser is a client application that will provide a graphical interface to
allow a user to explore the project information held in the database. The explorer

would provide three windows, one each for listing projects, jobs and facts. The user
can select a project name and the list of jobs is updated to show those jobs within
that project. The user can then select a job and the list of facts is updated to show
the facts for that job.

A cartoon of what the explorer might look is shown below:

The explorer will need to be synchronised with the database. This could be done in
one of two ways:

• The explorer performs a "refresh" operation either prompted by the user (e.g.
hitting an update button), or at regular time intervals; or,

• The explorer stays connected to the handler for its lifetime and listens for
broadcasts from the handler that prompts it to update (see section 4.2 for
information about broadcast communications).

4. General Issues

4.1 Modes of Use

Currently only one mode of use is envisaged, with a single user running a single
handler on a single machine. The user may run one or more applications that can
communicate simultaneously with the handler to store and retrieve data from the
database.

Two broad modes of use are envisaged:

• Manual structure determination: for example users running programs via
CCP4i. In this case each job is initiated by a user who may also made
requests to browse data in or add to the database

• Automated systems: where there is minimal user intervention with database
requests, and decisions are made automatically by a script or other pipeline.

The open architecture specified in this report should however be readily extensible to
more sophisticated modes of operation, for example multiple users accessing the
same project database.

4.2 Communications Protocols

Communications between the handler and the applications take a number of forms:

• Requests sent from an application to the handler
• Responses to those requests sent from the handler to the application
• Broadcasts sent by the handler to the application which is not a response to

a request

The CCP4i prototype handler needed broadcast communications, as a way for the
server to inform the application of changes e.g. updates to the database. This may
be required for client applications that maintain a persistent connection with the
handler, but is not considered an essential part of the version 1 specification.

The communications between the client applications and the handler (via the client
API) need to be defined. There are two components:

• Command/response language: the syntax and vocabulary of the requests,
responses and broadcasts sent via the sockets between the client application
and the handler

• Communication protocol: how these commands are "wrapped up" in order to
be sent across the sockets.

Wrapping is important as it provides a mechanism for validating the syntax of
communications, and parsing the different components (for example, separating the
return value from the result of a request, and for distinguishing between responses
and broadcasts). The version 1 specification will use a simple XML protocol
(described in appendix A).

Other protocols for future consideration include:

• HTTP (hypertext transfer protocol)

• SOAP (Simple Object Access Protocol)

Appendix A: Specification for Version 1 of DB Handler Communication
Protocols using XML

A.1. Overview

There are two components: the command language (the messages that are being
sent/received) and the communication protocol (the wrapping). Section A.2 treats the
former and section A.3 the latter.

A.2. Command language

ClientAPI.py (CVS version 1.9) defines a set of commands that map onto numbers
which are passed to the handler. The following mappings are in place:

 0: OpenDB host username password dbname
 1: NewProject projectname
 2: NewJob projectid jobname
 3: SetData jobid name value
 4: GetData jobid name
 5: ListProject
 6: ListJob projectid
 7: ListItem jobid
 8: ImportDingbat jobid name description type value
 9: ExportDingbat jobid name
 10: DeleteDingbat jobid name
 11: DescribeDingbat
 12: GetProject
 13: Version

I would suggest that the most immediate thing to do would be to substitute the
numbers (i.e. 0, 1, 2...) with the names of the equivalent commands in the client API
(i.e. OpenDB, NewProject, NewJob...). This would need only minor changes to
ClientAPI.py and server.py.

A.3. Protocol

We previously identified three types of messages being passed between the client
and the server:

1. requests (from the client to the server, to perform some action)
2. responses (from the server to the client, to report the result of a request)
3. broadcasts (from the server to the client, to report some change in status of

the database and not solicited by the client)

Only “requests” and “responses” need to be implemented in the initial version.
Requests need to specify a command and a set of arguments. Responses need to
return a value and a status.

The first attempts passed raw strings through sockets. This should be extended to
using some kind of simple (pseudo) XML. There are at least two possible ways of
doing this:

One possibility is to wrap the command and the arguments with specific tags that
identify the individual parts, for example:

<db_request command="OpenDB">

 <argument name="host">hostname</argument>
 <argument name="user">username</argument>
 ...

</db_request>

and:

<db_response status="OK">value</dbresponse>

An alternative approach is not to use attributes but tags only, e.g.:

<db_request>
 <request_name>OpenDB

 <host>hostname</host>
 <user>username</user>
 ...

 </request_name>
</open_db_request>

and:

<db_response>
 <status>OK</status>
 <result>value</value>

</db_response>

The precise form of the command mark-up should be documented in the supporting
documentation for the implementation of the version 1 handler, and be resolved in a
future version of the specification.

A.4. Implementing the protocol

This will require two new functions:

• to encode (= wrap a "plain" command or response in XML)

• to decode (= recover it from the XML).

ClientAPI functions will encode the arguments from the user and send the encoded
string to the server; the server will decode the string and attempt to execute the
command. It would then encode the response and send that back to the ClientAPI,
which would then decode it and give the result back to the client application.

Applications will do not use ClientAPI to communicate with the handler must deal
with the encoding/decoding themselves.

Appendix B: Unresolved Issues List for the Database Handler

This appendix summarises the various issues that the version 1 handler is intended
to resolve.

Name Description Resolution plan

CCP4i backend

The CCP4i flat-file database backend is
fundamentally different from the mySQL
implementation, and so the implementation
needs to be documented. The flat-file
backend will most likely need to be
reimplemented (and possibly not in Tcl).

Client attributes

What attributes do client applications have?
For example, do clients operate on behalf of
users? Do clients connect synchronously or
asychronously to the handler? Do clients
need to "watch" the database? Are there
different types of client?

Identify different
types of client and
client attributes via
"use cases" or
similiar

Communication
protocols

How are requests and responses passed
between the application and the handler?
This includes dealing with the names of the
requests that are passed between the
handler and the clients.

Connection
persistence

How persistent does the connection
between the client and the handler need to
be?

Database
backending

Does the handler application need to deal
with arbitrary abstract database backends,
for example ISpyB? That is, does the
handler need to be able to retrieve data from
an arbitrary database with a different
database structure, items etc than that
implemented by this project?

Data persistence

How persistent is the data stored in the
database? Some data may only be stored
for the lifetime of a job, other data may be
required afterwards.

Identify how data will
be used via "use
cases" or similar

Data transfer

How is information transferred between
different databases (e.g. facility databases,
LIMS for wet labs, the tracking database).
How do these overlap or complement each
other in terms of scope etc?

Begin dialogue with
other interested
parties about their
requirements

Data types

What kind of data are we storing (e.g. items
of text? compound data items such as cell
parameters? more sophisticated objects
such as python pickles?)

Error Checking

What error checking needs to be performed?
(e.g. checking that project names are
unique) Where is this checking performed?
(e.g. in the client side API, in the handler)

Installation
How difficult is it for non-expert user to install
and use the system?

Languages

What languages do we need to provide APIs
for? (Python, Tcl, C? Java?). Are there any
language-dependent features in our
implementation?

Performance
What volume of data can the system handle
(store, transfer)? Are there issues with
speed of access, response times etc?

Portability and
dependencies

What platforms can the handler and
database run on? What packages does the
system depend on to run? (e.g. python and
mySQL) What are the minimum versions
required from each dependency?

Security

Security issues include: permissions on data
for individual users and/or client
applications; protecting against malicious
attacks; authentication (checking that the
requests it receives are from a trusted
source)

Testing
How do we test the handler? What are we
trying to test?

Identify areas to test
by considering the
requirements for the
handler and the
database?

Tracking
How do we incorporate the concept of
subjobs? i.e. a job which is the child of a
previous job?

Appendix C: Original Database Handler Specifications

This document outlines the proposed specification for a CCP4i database handler that
was started in 2003 but never fully completed. However the development of that
prototype has informed many of the specifications in this report.

Aims: Provide an API to the CCP4i project history database that can be accessed
by: the main CCP4i process; independent processes started by the main CCP4i
process (``jobs''); external (non-CCP4i) applications.
In the first instance this must reproduce the existing functionality within CCP4i v1.3.8
for interacting with the database. It must be able to interact with the existing format of
the database (currently a flat format CCP4i-parameter or "def" file). However it
should also be extensible, that is, be able to accommodate a wider scope of
commands and to be easily extended to use different database backends.

Core Requirements

1. Reproduce existing functionality found in CCP4i 1.3.8.
2. Clearly separate general database functionality from CCP4i-specific

functionality.
3. Provide an API which can be used by non-CCP4i applications to interact with

the database (applications may be in languages other than Tcl).
4. Provide an API which can be used in a distributed computing environment.

Additional Requirements

5. Provide a way of expanding the scope of the project history database (allow
storage and access of new data items).

6. Enable new/different database backends to be used for storing the project
history database.

7. Enable updates/changes to item definitions.
8. Enable access to external/3rd party databases (for example LIMS).

General Issues

Security and authentication are issues that will need to be addressed if the server is
accessible over a network. These issues have not yet been explored.

Component-specific Issues

1. Requirements for CCP4i

The main CCP4i process needs both read and write access to the database,
as it needs to be able to register new jobs, set/edit associated information,
and delete jobs from the database, as well as requesting information on the
current state of the database. It must be able to handle ``update'' messages
from the database handler when the status of the database changes.

2. Requirements for Running Scripts (``jobs'')

Running jobs need to be registered with the handler as part of their startup,
but after this point only require limited write access (to add output files,
register script termination) and no read access to the database.

3. Requirements for Non-CCP4i Applications

Applications may be written in any language, so the protocol for exchanging
requests/information between the handler and the applications needs to be as
generic as possible.

4. Requirements for accessing other Databases

These are not currently known.

Current Implementation

The database for a given project is stored on disk as a flat file in CCP4i parameter
file format (".def"). The data in the file is read into an array in the main CCP4i process
when the project is first opened by the user. Subsequent queries or actions on the
database are made via the array held in memory, which is periodically written out
back to the file.
Functions for interacting with the database information are tightly embedded in the
code for the main CCP4i process. In some cases general database functions are
mixed together with CCP4i-specific code, thus the full range of functionality is not
easily accessible by non-CCP4i applications.

Possible Solutions

The current implementation does not meet all the requirements, for example it
doesn't provide an API which can be used easily by other applications. The current
prototype solution uses a separate database handler process. Application programs
interact with the database via socket requests made to the database handler
process. This addresses the issues of networked operation, and removes the
requirement for multiple language-specific APIs.

Other possible solutions (currently not under consideration):
It would be possible to separate the database handling API cleanly from the main
CCP4i process in such a way that other applications could load the commands into
an interpreter and use them to interact with the database directly. It would not be
straightforward for non-Tcl applications to interact with the database - this could be
addressed by implementing the API in a number of languages, however this would
incur an undesirable maintenance overhead. Also it fails to address the issue of
operating over a network.

Outline of the Database Handler (``DbCCP4i'')

The provisional name for the database handler process is DbCCP4i.
The current model of DbCCP4i consists of three basic sets of components:

1. Core handler. This manages the sockets for communicating with the
connecting processes, performs basic bookkeeping (e.g. tracking which
processes need access to which databases, which databases are currently
open, and so on), and passes requests and responses between processes
and databases via the appropriate API layers.

2. API layer to deal with requests received from and responses sent to the
connected processes using the appropriate protocols (e.g. XML/http).

3. API layers to deal with different types of database, e.g.:
i. CCP4i project database
ii. SQL database
iii. XML database

A DbCCP4i process can be started either by the main CCP4i process, or separately
e.g. via a user command. Each CCP4 project history database should only be
accessed by a single DbCCP4i at any one time (this could be controlled via lock

files), though a single DbCCP4i could access more than one project database - for
example, a user is browsing the project history data in one project, but also has
running jobs which are registered in a second project. To conserve system resources
each user should only have one DbCCP4i running at anytime.

Ultimately it should be possible to allow several users to access the same database
simultaneously via a single DbCCP4i.

Processes that wish to access the database must first register themselves with the
DbCCP4i - in a secure environment this should include some authentication
procedure. Registered processes may have different interaction requirements, for
example: the main CCP4i process needs to able to read and write to the database,
but it also needs to know when the database content changes (so it can update its
display); whereas running jobs only need to send information to the database (new
output files, job finishes or fails) and do not need to be informed of updates. There
will need to be an "update" mode whereby the DbCCP4i broadcasts notice of an
updated database to all connected processes which have registered an interested in
knowing when certain types of database content have changed.

There needs to be a mechanism for new processes to detect and connect to an
existing DbCCP4i when trying to access a project database - possibly through
information stored in the lock file.

DbCCP4i processes should have a number of different persistence modes. Initially
the DbCCP4i will persist as long as it has still has registered processes (processes
should unregister themselves on shutdown). It should also be possible to leave the
DbCCP4i running indefinitely and have processes connect and disconnect as
required. There also needs to be a way to cleanly shutdown a DbCCP4i e.g. via a
user command.

Prototype dbCCP4i: current status

A prototype version of dbCCP4i now exists which has been built on top of CCP4i
1.3.9.

Currently Unresolved Issues for DbCCP4i

1. Information exchange protocols: i.e. how are requests and information to be
passed between the server and the application (syntax etc)?

2. Security: how to make sure that only authorised applications are allowed to
interact with the database?

3. Locking issues: should multiple processes be allowed access (read-write,
read-only) to the same database (queuing/lock-grab/lock-out)?

Work Breakdown for Implementation

1. Define the APIs for interaction between the DbCCP4i and the client
processes.

2. Define the APIs for interaction between the DbCCP4i and the databases.
3. Rewrite CCP4i code so that CCP4i interacts with the database through a set

of API commands. More specifically this consists of separating the existing
commands into two distinct classes: a set which interact directly with the
global `database' variable and its image on disk (the core database
commands); and a set which interact with the database information via calls
to the first.

4. Write the core DbCCP4i process and implement functions to allow processes
to start-up, connect to/register with, disconnect/unregister from and shutdown
the DbCCP4i. Investigate/deal with security issues.

5. Implement the project database handling functions identified in 3) inside the
DbCCP4.

6. Rewrite the CCP4i database API to interact with the project history database
via the DbCCP4i.

7. Document the implementation and usage of the DbCCP4i and APIs.
8. Perform local testing.
9. Distribute new CCP4i for wider testing.

