Automated Decision Making in DNA

BioXHIT/CCP4/e-HTPX "Standards for Automation" February 2005

Decision Making...

For instance, "given it's 10.34 pm do we have time to get to the pub?"

- Definition I'd like a pint but it is getting late
- Information pub closes in 26 minutes
- Judgment since I'm ten minutes away I'm OK
- Execution go get that drink!
- Verification check your watch on the way

More sensibly...

Given that I need this data set to 1.5 angstroms, can I get decent data from this crystal in 30 minutes?

- Definition you have a limited time to perform the experiment in
- Information from indexing and strategy, it looks like data collection will take 26 minutes
- Judgment time is adequate
- Execution begin the data collection
- Verification process the data as you go...

Decisions in DNA

- Quality of images (screening)
- Quality of indexing solution
- Determination of strategy
- Verification of quality of data
- Determination of point group, that is, checking the assumptions made from indexing are correct

Definition

Defining the problems in the scope of DNA is relatively easy:

- Is the crystal OK?
- What strategy do I need?
- Is this data set OK?

Information

Getting the information together is the hard bit:

- People are very good at recognising patterns in pictures, computers aren't
- Only input is the images recorded and the meta data from the beam line
- Given enough information most decisions are trivial, but getting the information can be hard

Judgement

- Again people are, in general, better at this than computer programs
- Given enough information the judgements can be OK but can you gather enough information?
- The correct judgement is not cast in stone ask ten crystallographers something and you will often get 11 answers

Execution

- Involves controlling the hardware
- Scope is relatively small -
 - Move detector to here
 - Record an exposure for this long, while moving the crystal thus
- May become more challenging as the abilities of beam lines become more sophisticated

Verification

Verification steps in DNA are exactly as described as "good practice" at the study weekend

- Process the data as you go
- Inspect the images and the results
- Try and solve the structure while the crystal is still available
- Look for signs of radiation damage

In DNA...

Information...

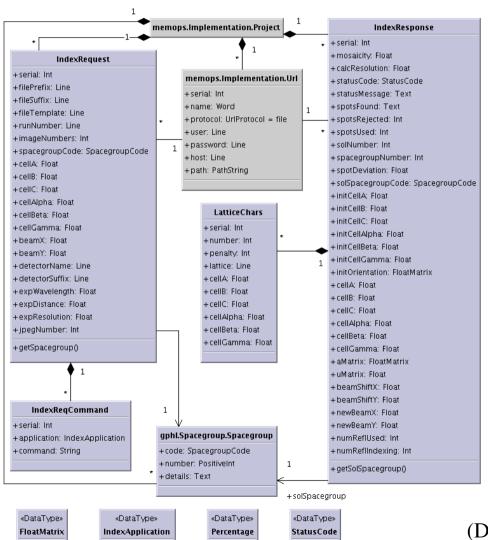
- Have had to develop a set of "eyes" to inspect the images with DiffractionImage
- Have to have a reasonable idea of expectations on which to base the judgements – both "defaults" and dynamic expectations
- Have to get as much information as we can in a limited time deciding on a "perfect" data collection strategy is much less optimal than coming up with a "good" on in one tenth the time

In DNA...

Information...

- Have to get data out of programs –
 for this modifications have been
 added to Mosflm, Scala, Truncate,
 Sortmtz to write out results as
 XML
- "Grep"ing works, but is not stable, and scales very badly for large amounts of output (ever read a mosflm.lp file?!)

```
Session Edit View Bookmarks Settings Help
                          94.005997</item>
   </list>
   t name="refined_beam">
                         93.362167</item>
     <item name="x">
                         93.968628</item>
  (/tahle>
   list name="cell">
                          90.234550</item>
                          90.234558</item>
                          90.234550</item>
                             90.000000</item>
                             90.000000</item>
 list name="u matrix">
                          -0.239882</item>
                           -0.910902</item>
                           0.832615</item>
```



In DNA...

Most of the problem is getting hold of enough information to make a decision, so

- Need a standardised way of describing the data
- Need a standardised way of handling the data
- Need a way to express the decision making process

Standard Data Formats...

- Standard DNA data model
- Allows interchange of data easily
- Probably the single most important part of DNA!

(Diagram supplied by Lorenzo Milazzo using CCPN software - Thanks!)

Comments

- Information gathering has dependencies you need to autoindex before you can identify properly the strength of diffraction
- Speed is an issue, since people are waiting for the results
- Modularity is important
- Data management & communication are critical

Thanks to...

Everyone involved in DNA!

Karen Ackroyd*, Alun Ashton, Gleb Bourenkov*, Gérard Bricogne, Sandor Brockhauser, Liz Duke, Eric Girard, Steve Kinder*, Ludovic Launer, Pierre Legrand, AndrewLeslie, Katherine McAuley, Sean McSweeney, Lorenzo Milazzo, Colin Nave, Venkataraman Parthasarathy, Alexander Popov*, Harry Powell*, Raimond Ravelli, Lucile Roussier, Darren Spruce*, Olof Svensson*, Andrew Thompson, Takashi Tomizaki, Graeme Winter*

