Data problems:

How to spot them and what to do

Clemens Vonrhein Global Phasing Ltd., Cambridge (UK)

> CCP4 Study Weekend 2010 Nottingham, UK

Introduction

nice linear path from crystal to final structure

Introduction

Introduction

nice linear path from crystal to final structure

Problems with:

- Crystal form
- Crystal handling
- Collection strategy
- Data processing
- Data characteristics

distinguish features we have no immediate control over from problems we can deal with

- problematic refinement
- Rfree 'stuck'
- unclear density
- disordered domain not visible

- no heavy atom substructure
- poor phasing power
- spacegroup uncertain
- density too poor to build into

Expectations

How it usually starts ...

From: XYZ Subject: Need help! To: vonrhein@GlobalPhasing.com Date: Thu, 31 Feb 2009 12:28:22

Dear Clemens,

I've collected several datasets but can't solve my structure. What should I do?

Kind regards

XYZ

From: Subject: Help sought for problem dataset To: vonrhein@GlobalPhasing.com Date:

Hi Clemens,

My problem is that my Rfree is down at 38% and I can't get it to drop any further. The data are very anisotropic and the maps from solomon look like 4A maps (the data go to 2.4A).

Any advice would be appreciated.

Thanks,

Take a step back to gather evidence

Bring in the usual suspects

Tie up loose ends

hklview (P. Evans, xdl_view library by J. Campbell)

Looking at diffraction data - 2

	Overall	InnerShell	OuterShell
Low resolution limit	73.39	73.39	2.17
High resolution limit	2.06	6.50	2.06
Rmerge	0.076	0.036	0.367
Ranom	0.046	0.010	0.476
Rmeas (within I+/I-)	0.089	0.042	0.514
Rmeas (all I+ & I-)	0.093	0.040	0.634
Rpim (within I+/I-)	0.089	0.021	0.360
Rpim (all I+ & I-)	0.093	0.015	0.421
Total number of observations	120693	5371	2465
Total number unique	19609	809	1589
Mean(I)/sd(I)	15.6	34.4	2.3
Completeness	86.6	99.6	49.3
Multiplicity	6.2	6.6	1.6

analysing unindexed spots against resolution (and compare to known values):

Resolution [A] : no. of spots

3.92 - 3.89 : 1698 spots with score= 0.945 known ice-ring resolutio	1
3.69 - 3.66 : 1753 spots with score= 0.909 known ice-ring resolutio	1
3.46 - 3.44 : 1156 spots with score= 0.650 known ice-ring resolutio	1
3.37 - 3.36 : 22 spots with score= 0.867	
2.72 - 2.72 : 21 spots with score= 1.235	
2.68 - 2.67 : 587 spots with score= 0.621 known ice-ring resolutio	ı
2.48 - 2.47 : 28 spots with score= 2.544	
2.26 - 2.25 : 3335 spots with score= 0.763 known ice-ring resolutio	1
2.20 - 2.19 : 21 spots with score= 1.150	
2.16 - 2.16 : 26 spots with score= 0.691	
2.14 - 2.13 : 23 spots with score= 0.440	
2.11 - 2.11 : 22 spots with score= 0.819	
2.08 - 2.07 : 1615 spots with score= 0.698 known ice-ring resolutio	ı
2.05 - 2.03 : 45 spots with score= 0.994 known ice-ring resolutio	1
1.98 - 1.95 : 202 spots with score= 0.782 known ice-ring resolutio	ı
1.93 - 1.92 : 1021 spots with score= 0.618 known ice-ring resolutio	ı
1.90 - 1.88 : 145 spots with score= 0.811 known ice-ring resolutio	ı
1.83 - 1.83 : 33 spots with score= 2.107	
1.77 - 1.76 : 47 spots with score= 1.453	
1.72 - 1.72 : 22 spots with score= 0.299 known ice-ring resolutio	1
1.70 - 1.70 : 25 spots with score= 0.366 known ice-ring resolutio	1
1.62 - 1.61 : 26 spots with score= 1.016	

Problem: poor phasing, very low resolution structure

List of	i re	jected	l reflexions:	BIN	Dmin	Dmax	Nacen	PP_acen	
0	0	2	-22.54234	1	105.66	15.84	248	4.731	
0	0	8	-9.35818	2	15.84	11.26	563	4,106	4
0	1	1	-12.82681	- 3	11 26	9 21	748	3 431	
0	1	2	-68.16851	ے ۸	0.21	7 00	000	2 052	
0	1	6	-10.13897	4	9.21	7.99	909	3.053	
0	1	9	-8.98388	5	7.99	7.15	1037	2.483	
0	2	1	-146.59354	6	7.15	6.53	1145	2.184	
0	3	15	-8.94883	7	6.53	6.05	1261	1.610	
0	3	20	-9.90736	8	6.05	5.66	1374	1.291	
				9	5.66	5.33	1461	1.049	
0	34	6	-9.33750	10	5.33	5.06	1533	0.906	
0	34	11	-9.64502	11	5.06	4.83	1634	0.716	
1	0	1	-132.88499	12	4 83	4 62	1679	0 597	
1	0	2	-14.15716	1 2	4.60	4.02	1707	0.507	
1	0	3	-10.23035	10	4.02	4.44	1020	0.302	
1	0	7	-9.55071	14	4.44	4.28	1839	0.407	
1	0	24	-8.93068	15	4.28	4.13	1925	0.340	
1	1	0	-15.43390	16	4.13	4.00	1992	0.301	
1	1	1	-629.47577	17	4.00	3.88	2057	0.275	
1	1	2	-105.49634	18	3.88	3.77	2110	0.259	
1	2	0	-17.00902	19	3.77	3.67	1551	0.206	
1	2	1	-10.81201	20	3 67	3 58	617	0 179	
1	7	16	-9.41314	20	0.07	0.00	017	0.175	
1	17	2	-9.70722	OVER	ALL		27470	1.126	

<u>SHARP</u>: Fortelle, E. de la & Bricogne, G. (1997). In Methods in Enzymology, Vol. 276. Macromolecular Crystallography Part A. C.W. Carter and R.M. Sweet ed. Academic Press, San Diego, pp. 472-494.

BIN	Dmin	Dmax	Nacen	PP_acen	BIN	Dmin	Dmax	Nacen	PP_acen
1	105 66	15 84	260	1 857	7 1	105.66	15.84	248	4,731
2	15 84	11 26	568	3 470	2	15 84	11 26	563	4 106
2	11 26	9 21	756	3 027		11 26	9 21	748	3 431
	9 21	7 99	915	2 847	4	9 21	7 99	909	3 053
5	7 99	7 15	1054	2.047	5	7 99	7 15	1037	2 483
5	7.33	6 53	1116	2.331	5	7.55	6 53	11/5	2.405
7	6 52	6.05	1266	1 504	7	6 53	6 05	1261	1 610
, 0	6.55	6.05 5.66	1200	1 207	/	6.05	5.05	1201	1 201
0	6.05 E.66	5.00	1460	1.207	8	6.05 5.66	5.00	1461	1.291
10	5.00	5.33	1651	1.047	• 9	5.00	5.55	1522	1.049
10	5.33	5.06	1001	0.907	10	5.33	5.06	1000	0.906
	5.06	4.83	1653	0./18	11	5.06	4.83	1634	0./16
12	4.83	4.62	1713	0.599	12	4.83	4.62	1679	0.597
13	4.62	4.44	1806	0.503	13	4.62	4.44	1787	0.502
14	4.44	4.28	1855	0.408	14	4.44	4.28	1839	0.407
15	4.28	4.13	1961	0.343	15	4.28	4.13	1925	0.340
16	4.13	4.00	2009	0.303	16	4.13	4.00	1992	0.301
17	4.00	3.88	2080	0.276	17	4.00	3.88	2057	0.275
18	3.88	3.77	2142	0.260	18	3.88	3.77	2110	0.259
19	3.77	3.67	1564	0.203	19	3.77	3.67	1551	0.206
20	3.67	3.58	624	0.173	20	3.67	3.58	617	0.179
OVER	ALL		27772	1.095	OVER	ALL		27470	1.126
		all ref	lections			excl	uding	rejections	5

Dmin	Dmax	Nacen	PP_acen
105.66	15.84	260	1.857
15 84	11 26	568	3 470
11 26	0 21	756	2 027
0.21	9.21	750	2 947
9.21	7.99	915	2.04/
7.99	7.15	1054	2.331
7.15	6.53	1146	2.148
6.53	6.05	1266	1.584
6.05	5.66	1380	1.287
5.66	5.33	1469	1.047
5.33	5.06	1551	0.907
5.06	4.83	1653	0.718
4.83	4.62	1713	0.599
4.62	4.44	1806	0.503
4.44	4.28	1855	0.408
4.28	4.13	1961	0.343
4.13	4.00	2009	0.303
4.00	3.88	2080	0.276
3.88	3.77	2142	0.260
3 77	3 67	1564	0 203
3 67	3 58	624	0 173
5.07	5.50	024	0.1/5
ALL		27772	1.095
	Dmin 105.66 15.84 11.26 9.21 7.99 7.15 6.53 6.05 5.66 5.33 5.06 4.83 4.62 4.44 4.28 4.13 4.00 3.88 3.77 3.67	Dmin Dmax 105.66 15.84 15.84 11.26 9.21 9.21 9.21 7.99 7.99 7.15 7.15 6.53 6.53 6.05 5.66 5.33 5.33 5.06 5.06 4.83 4.83 4.62 4.62 4.44 4.44 4.28 4.28 4.13 4.13 4.00 4.00 3.88 3.88 3.77 3.67 3.58	Dmin Dmax Nacen 105.66 15.84 11.26 568 11.26 9.21 756 9.21 7.99 915 7.99 7.15 1054 7.15 6.53 1146 6.53 6.05 1266 6.05 5.66 1380 5.66 5.33 1469 5.33 5.06 1551 5.06 4.83 1653 4.83 4.62 1713 4.62 4.44 1806 4.44 4.28 1855 4.28 4.13 1961 4.13 4.00 2009 4.00 3.88 3.77 3.67 3.58 624

MOSFLM: A. Leslie (1992). Joint CCP4-ESF-EAMCB Newsletter on Protein Crystallography 26.

	Overall	InnerShell	OuterShell	
Low resolution limit	22.74	22.74	2.74	
High resolution limit	2.61	8.22	2.61	
Pmorgo	0 076	0 040	0 442	
Ranom	0.070	0.040	0.442	1
Rmeas (within I+/I-)	0.084	0.045	0.501	· · · · · ·
Rmeas (all I+ & I-)	0.095	0.062	0.507	
Total number of observations	55451	1563	5622	
Total number unique	5465	182	745	
Mean(I)/sd(I)	22.5	82.0	4.6	
Completeness	99.7	93.9	99.1	
Multiplicity	10.1	8.6	7.5	
Anomalous completeness	98.8	92.3	93.0	•
Anomalous multiplicity	5.3	5.0	4.0	· · · · ·
DelAnom correlation between half-sets	0.609	0.792	0.024	
Mid-Slope of Anom Normal Probability	1.467			
ditto (all data)	2.172			

Looks great: strong anomalous signal ... but there is a small problem:

fraction of unit cell occupied by atoms =

1.276 <=====

Overall InnerShell OuterShell Low resolution limit 79.86 79.86 2.16 High resolution limit 2.05 6.49 2.05 0.123 0.078 0.444 Rmerge 0.032 0.017 0.314 Ranom 0.130 0.082 0.604 Rmeas (within I+/I-) Rmeas (all I+ & I-) 0.129 0.082 0.562 0.025 Rpim (within I+/I-) 0.130 0.406 Rpim (all I+ & I-) 0.129 0.019 0.306 Total number of observations 13992 5686 288942 Total number unique 19939 755 2051 Mean(I)/sd(I)17.0 39.5 2.0 Completeness 92.3 100.0 67.0 14.5 2.8 Multiplicity 18.5

Project: Test Crystal: A Dataset: 0.9772A

Inverse beam experiment: 5 images a 1° 360° of data, H32 Problem: unable to solve

Summary data for

<u>Scala:</u> P.R.Evans (2005). Scaling and assessment of data quality. Acta Cryst. D62, 72-82.

The ROGUES file contains all rejected reflections (flag "*", "@" for I+- rejects, "#" for Emax rejects) TotFrc = total fraction, fulls (f) or partials (p) Flag I+ or I- for Bijvoet classes DelI/sd = (Ihl - Mn(I)others)/sqrt[sd(Ihl)**2 + sd(Mn(I))**2]k h k l Batch E TotFrc Flag Scale DelI/sd d(A) Phi 1 I siqI \mathbf{LP} Xdet Ydet h (measured) (unique) 0 -2 0 -2 1142 0.00 1.00f I+ 1.043 0.017 0.6 59.05 998.9 1144.0 321.5 -6 2 1 1171 350.4 -1 1 -2 0 -2 -6 0.00 0.96f 1.066 0.006 0.8 59.05 968.2 1121.4 1 I+ -1 1 -2 1 0 -2 2168 17 **0.11 1.00f *I+** 1.041 0.006 9.0 59.05 968.9 1093.7 167.6 2 0 -1 -2 0 -2 1076 -6 2 0.00 1.00f I+ 1.045 0.015 985.3 1140.6 255.9 1 0.6 59.05 -1 -2 0 -2 2075 17 2 0.11 1.00f *I+ 1.037 0.015 11.0 59.05 986.0 1075.7 74.8 0 1 2 -2 1075 1.00f I- 1.036 0 1 1 0 -10 2 0.00 0.015 -2.2 59.05 1019.9 1076.1 254.8 Weighted mean -7 0 7 1108 361 34 0.51 1.00f *I+ 1.055 0.030 10.3 21.15 1080.9 1042.5 287.6 7 0 1 1 -7 7 1.00f *I-0.030 10.3 21.15 -1 0 1 0 1112 362 34 0.51 1.051 924.1 1173.4 291.7 2108 -1 0 -7 1 0 7 2 5 0.04 1.00f I-1.028 0.030 -9.4 21.15 925.6 1040.8 107.4 1.00f *I+ -1 1 7 1 0 7 1113 316 30 0.47 1.045 0.042 10.1 21.15 1050.3 1017.7 292.6 1 -1 -7 1 0 7 1116 339 32 0.49 1.00f *I-1.052 0.042 10.2 21.15 954.6 1198.1 295.6 -1 -7 1 0 7 2113 -5 6 0.00 1.00f *I-1.046 112.5 1 0.041 -1.6 21.15 956.7 1016.6 7 0 -1 7 1 0 1136 443 0.56 0.91f I+ 1.051 0.036 9.4 21.15 1067.0 1028.6 315.7 47 1.050 0 1 -7 1 0 7 1140 436 46 0.56 1.00f *I-0.036 9.3 **21.15** 937.7 1186.7 319.2 Weighted mean 7 **Inverse beam:** 'phi-0' = batches 1001-1180

'phi-180' = batches 2001-2180

WARNIN	G:	there dataso speci resul resul	are ets fic ts by ction	ser (as reso y re ns t	ious dit judged k lution i strictir hat look	fferences by analysi ranges or ng e.g. lo < suspicio	between 2 ng E valu shells yo w resolut us :	amplitudes es). If the u might be ion. Here i	from diff se appear able to im s a list o	erent only in prove f the
		н	к	L	Reso	w1	W	2 w3	(<mark>all</mark>)	
		-2	0	4	10.75	126.22	137.0	3 2.31	*	
		-3	1	3	12.15	3.12	-	581.69	*	
NOTE		4 re	flex	cion	s have	large and	omalous d	ifferences	I.	
н	к	L		F	MID	SMID	DANO	SANO	ABS (DANO)	/FMID
-3	1	12		203	. 27	5.43	398.98	7.68	1.96	*
-2	2	12		79	. 28	2.86	-150.88	4.05	1.90	*
-2	6	17		177	. 12	8.44	-259.31	11.94	1.46	
-1	1	2		28	. 28	2.17	-43.53	3.07	1.54	
WARNIN	IG :	We w	vill	rem	ove 2 r	eflexions	with a	ABS(DANO)/F	-MID ratio) > 1.9

Analysis/correction becomes more difficult once data is merged

Indexing - 1

Why does **indexing fails**? Some of the possible reasons: Wrong information

- beam centre
- rotation axis
- oscillation range
- wavelength, distance
- Not enough spots
- Too many spots
- □ Inspect images:
 - Beam centre
 - Loons
 - Overlaps
 - Ice-rings

two main reasons (?)

- ice-rings
- multiple lattices
- radiation damage (cell change)
- crystal slippage

Indexing - 2

Herbst-Irmer, R. & Sheldrick, G. M. (1998). Refinement of Twinned Structures with SHELXL97. Acta Cryst. B54, 443-449.

Parsons, S. (2003). Introduction to twinning. Acta Cryst. D59, 1995-2003.

spot search and indexing using XDS assign spots to different lattices get best indexing for each lattice visualize different lattices for most populated images comparison of orientation matrices

C. Vonrhein, Global Phasing Ltd

	Overall	InnerShell	OuterShell	Overall	InnerShell	OuterShell
Low res [A]	43.14	43.14	2.00	127.00	127.00	3.04
High res [A]	1.90	6.01	1.90	2.88	9.12	2.88
Rmerge	0 074	0 036	0 525	0 211	0 092	0 433
Rmoas	0.087	0.048	0.525	0.211	0.162	0.433
Mean(T)/sd(T)	16.8	77 2	2.8	5 0	10 5	2 0
Completeness	98.0	97 9	87.0	99.0	96.4	96.5
Multiplicity	6.5	5.4	4.1	4.7	3.9	3.2

Integration - 1

per-image scale (XDS): detect problematic images

Kabsch, W. (2001) Chapter 25.2.9. XDS in International Tables for Crystallography, Volume F.

Integration - 2

scale

360°: plate-like crystal? anisotropic diffraction? poorly centred? 180°: beam dump? fresh part of crystal?

40

60

80

Image

100

120

140

160

180

1.05

1

0.95

0.9

0.85

0.8

0.75

0.7

0.65

0

20

Scale factor

what would be nice : movie of crystal as it rotates during data collection for now : analyse timestamp in image header (MAR, ADSC, Pilatus, RIgaku, ...)

Anisotropy - 1

SHARP/autoSHARP

Vonrhein, C., Blanc, E., Roversi, P. & Bricogne, G. (2007). Methods Mol Biol 364, 215-30

SFCHECK

A.A.Vaguine, J.Richelle, S.J.Wodak. Acta Cryst. (1999). D55, 191-205

PHASER

A. J. McCoy, R. W. Grosse-Kunstleve, P. D. Adams, M. D. Winn, L.C. Storoni and R.J. Read (2007). J. Appl. Cryst. (2007). 40, 658-674.

Anisotropy - 2

						Help
Job title	correct for anisotro	py using Phase	r			
Mode for r	nolecular replacem	ent anisc	stropy correction	-		
Define dat	a (anisotropy corre	ction)				
MTZ in	Full path 😐 <mark>/</mark> ł	1 <mark>0me/vonrhein/</mark> f	Projects/CCP4StudyW	eekend2010/betp/s	eb4 Browse	View
F		F	- SigmaF	SIGF		
Compositi	on of the asymmeti	ric unit				
Total scat	tering determined b	у со	mponents in asymmet	ric unit 🦳		
Componer	nt #1 protein	_ seque	nce file 💴	Number in asym	metric unit <mark>3</mark>	
SEQ file	Full path //ho	me/vonrhein/Pr	ojects/CCP4StudyWe	ekend2010/betp/set	64 Browse	View
_			Edit list	- Define a	another com	onent
Additional	parameters					
	Run	-	Save or Rest	ore 🗕	Close	e
Drainai		nta of on	iant monta mon		ating o	

Principal components of anisotropic part of B affecting observed amplitudes: eigenB (A^2) direction cosines (orthogonal coordinates)

41.578	1.0000	0.0000	0.0000
23.639	-0.0000	0.0000	1.0000
-65.218	-0.0000	1.0000	-0.0000

can be crucial in density modification and/or automatic building

Expect the unexpected - 1

X hay cell billio	nsions	\$				
a (angstroms)	Between:	106	and	110	 0	Result Co
b (angstroms)	Between:	106	and	110]	3 Struc
c (angstroms)	Between:	150	and	155]	
alpha (degrees)	Between:	90	and	90		
beta (degrees)	Between:	90	and	90		
gamma (degrees)	Between:	120	and	120		
Space Group						
earch by selecting a	a space group	from the pull down menu			-	
H 3 2 🗘)				0	Result Co 796 Struc

Expect the unexpected - 2

		ROM ESCHER	RICHIA COLI WITH THRI	EE MAGNESIUM IONS	11PW È Display Files ▼ Download Files ▼ Print this Page
D01:10.22	2 10/pab lipw/pab				Share this Page
Primary	Citation				Biological Assembly ?
Crystall Kankare, (1996) Bi	ographic identification of met J.P., Salminen, T.P., Lahti, R.P., ochemistry 35: 4670-4677	al-binding site Cooperman, B	es in Escherichia coli inor .S.º, Baykov, A.A.º, Gold	ganic pyrophosphatase. man, A.P	
PubMed:	8664256 🕖			DOI: 10.1021/bi952637e 🖻	
			Search	h Related Articles in PubMed 🖲	
PubMed /	Abstract:				
We repo to R-fact monome	rt refined crystal structures of the h ors of 18.3% and 17.1% at 2.2 an ers in the asymmetric unit of an R3	exameric solubl d 2.3 angstroms 2 [Read Mor	le inorganic pyrophosphatase s, respectively. Both structures e & Search PubMed Abstracts	from Escherichia coli (E-PPase) s contain two independent s]	
1 Molec	ular Description			Hide	
Classifica Structure	tion: Hydrolase Weight: 39267.92				More Images.
Molecule: Polymer: Chains: EC#:	SOLUBLE INORGANIC PYROPHOSE 1 Type: polypeptide(L) A, B 3.6.1.19	HATASE		Length: 175	View in Jmol SimpleViewer Other Viewers Workshop
					Biological assembly assigned by
1 Source	2			Hide	authors
Polymer: Scientific	I Name:	Escheric	hia coli,P		‡ Deposition Summa ry Hid
					Authors: Kankare, J.A.,
‡ Ligano	l Chemical Component			Hide	Goldman, A. 🔎
Identifie	r Name	Formula	Interaction View	Links	Deposition: 1996-03-0
MG 🔎	MAGNESIUM ION	Mg	Ligand Explorer	(R) 🖸 🖽	Release: 1997-08-2
					(REVDAT): 2009-02-2
1 Denve	ed Data			Hide	
• CATH	Classification v3.2.0 - (2 Domains)				‡ Experimental Details Hid
o PFAM o GO Ter	Classification - (2 Domains) ms - (9 Terms)				Method: X-RAY DIFFRACTION
3	, ,				E Resolution [Å]: 2.30
				Reset Layout	R-Value: 0.171 (obs.)
					R-Free: 0.239
					Space Group: H 3 2/2
					Longth [8] Angles [9]
					a = 109.40 g = 90.00
					$b = 109.40$ $\beta = 90.00$
					c = 154.30 y = 120.00

Global Phasing, Cambridge (UK):

Gérard Bricogne, C. Flensburg, P. Keller, W. Paciorek, A. Sharff, O. Smart, T. Womack: SHARP/autoSHARP, BUSTER, autoPROC

Program developers:

MOSFLM: Andrew Leslie & Harry Powell (MRC/LMB Cambridge) SCALA/POINTLESS: Phil Evans (MRC/LMB Cambridge) XDS: Wolfgang Kabsch (MPI Heidelberg) & Kay Diederichs (Universität Konstanz)

Users and test data:

Global Phasing Consortium members

Felix Rey, Marija Backovic, Joseph Cockburn, Stephane Duquerroy, Sebastien Igonet, Thomas Krey, Carlos Massayuki, Alejandra Tortorici, Marie-Christine Vaney, James Voss (Institut Pasteur, Paris)

Susanne Ressl, Christine Ziegler (MPI Biophysik, Frankfurt), Martin Grininger, Kornelius Zeth (MPI Biochemistry, Martinsried), Qilu Ye (Queens University, Kingston, Ontario), Andrew Mattevi (Pavia) ... and many many more

The Joint Center for Structural Genomics (JCSG)