Data Reduction

Space Group Determination, Scaling and Intensity Statistics

Scaling and Merging

Our job is to invert the experiment: we want to infer |F| from our measurements of intensity l

Model of experiment

experiment

Data reduction can be done in an automated pipeline such as XIA2 (along with integration, ie go from images to a list of hkl F ready for structure determination)

XIA2 is used at Diamond (see Graeme Winter for more information)
This works pretty well, but in difficult cases you may need finer control over the process

Scale symmetry-related intensities together
Produce statistics on data quality
 Generate or copy freeR flags

CTRUNCATE

Estimate |F| from I detect twinning (intensity statistics)

Determination of Space group

The space group symmetry is only a hypothesis until the structure is solved, since it is hard to distinguish between true crystallographic and approximate (non-crystallographic) symmetry.

By examining the symmetry of the diffraction pattern we can get a good idea of the likely space group

It is also useful to find the likely symmetry as early as possible, since this affects the data collection strategy

Lattice symmetry imposes constraints on the cell dimensions (eg $\alpha=\beta=\gamma=90^{\circ}$ for an orthorhombic lattice), but the converse is not true: cell dimensions can have special relationships accidentally. Indexing in eg Mosflm only considers lattice geometry not symmetry (cubic, hexagonal/trigonal, tetragonal, orthorhombic, monoclinic, or triclinic, + lattice centring P, C, I, R, or F)

The Laue group (Patterson group) is the symmetry of the diffraction pattern, so can be determined from the observed intensities. It corresponds to the space group without any translations, and with an added centre of symmetry from Friedel's law.

The space group is the point group + lattice centring + translations (eg screw dyad rather than pure dyad). Only visible in diffraction pattern as systematic absences along axes - these are not very reliable indicators as there are few axial reflections and there may be accidental absences.

Protocol for space group determination (program POINTLESS)

I. From the unit cell dimensions, find the highest compatible lattice symmetry (within a tolerance)
2. Score each symmetry element (rotation) belonging to lattice symmetry using all pairs of observations related by that element
3. Score combinations of symmetry elements for all possible sub-groups (Laue groups) of lattice symmetry group.
4. Score possible space groups from axial systematic absences

Scoring functions for rotational symmetry based on correlation coefficient, since this relatively independent of the unknown scales.
$\mathrm{R}_{\text {meas }}$ values are also calculated

Examine output either from

Examine output either from

View Annotated Log in Web

Please consider citing the following papers:

- Pointless
- P.R.Evans, 'Scaling and assessment of data quality' Acta Cryst. D62, 72-82 (2006)

Pointless Version 1.4.6 Run at 15:53:20 on 17/12/2009

Result:
Best Solution space group P 212121

Reindex operator:	$[\mathbf{h}, \mathbf{k}, \mathbf{l}]$
Laue group probability:	0.985
Systematic absence probability:	0.851
Total probability:	0.838
Space group confidence:	0.784
Laue group confidence	0.982

> Summary table: probabilities and confidence levels

Unit cell: 34.1654 .868909090
17.00 to 1.78 - Resolution range used for Laue group search
17.00 to 1.78 - Resolution range in file, used for systematic absence check

Number of batches in file: 100

Axial reflections, axis c (lattice frame)

Graphs of axial reflections for systematic absences

A straightforward orthorhombic case

Analysing rotational symmetry in lattice group $P \mathrm{~mm} m$

			elat					weak	er than othe	
Scor Probability ${ }^{1}$ s			fficie	ient	R-factor					
Nelmt	Lklhd	$\mathrm{Z}-\mathrm{cc}$	CC	N	Rmeas		Symmetry \&	operator	(in Lattice	Cell)
1	0.948	9.54	0.95	12122	0.097		identity			
2	0.942	9.44	0.94	18346	0.121	***	2-fold 1	$\left.\begin{array}{lll}0 & 0 & 1\end{array}\right)$	\{ $-\mathrm{h},-\mathrm{k},+1\}$	
3	0.949	9.58	0.96	30259	0.097	**	2-fold h	$\left.\begin{array}{lll}1 & 0 & 0\end{array}\right)$	$\{+\mathrm{h},-\mathrm{k},-\mathrm{l}\}$	
4	0.912	9.15	0.92	17427	0.120	***	2-fold k	0100	\{ $-\mathrm{h},+\mathrm{k},-1$ \}	

Separate scores for each symmetry operator in maximum possible lattice symmetry

	Correlation										
	Probability				coefficient			R-factor			
Laue Group ReindexOperato		Lklhd	NetZc	$\mathrm{Zc}+$	Zc-	CC	CC-	Rmeas	R-	Delta	
$=1 \quad \mathrm{P} \mathrm{mmm}$	***	0.985	9.35	9.35	0.00	0.94	0.00	0.11	0.00	0.0	[h, k, l]
2 P 1 2/m 1		0.006	0.38	9.56	9.18	0.96	0.92	0.10	0.12	0.0	[k, $\mathrm{h},-\mathrm{l}]$
3 P		0.005	-0.01	9.38	9.39	0.94	0.94	0.11	0.11	0.0	[$-\mathrm{h},-1,-\mathrm{k}]$
$4 \mathrm{P} 1 \mathrm{l} / \mathrm{m} 1$		0.003	-0.13	9.31	9.44	0.93	0.94	0.11	0.11	0.0	[h, k, l]
$5 \quad \mathrm{P}-1$		0.000	0.22	9.54	9.32	0.95	0.93	0.10	0.11	0.0	[h, k, l]

Combined scores for all possible Laue (point) groups down to PI
A clear indication that the Laue group is Pmmm (P222)

Possible axial systematic absences to determine space group

Fourier analysis of $I / \sigma(\mathrm{I})$

There are indications of 2 । screw symmetry along all principle axes (though note there are only 3 observations on the a axis (h00 reflections))

Clear 2। axis along b

Itsigl vs. index

Clear 2। axis along c

```
Possible spacegroups:
Indistinguishable space groups are grouped together on successive lines
'Reindex' is the operator to convert from the input hklin frame to the standard spacegroup frame.
'TotProb' is a total probability estimate (unnormalised)
'SysAbsProb' is an estimate of the probability of the space group based on
the observed systematic absences.
'Conditions' are the reflection conditions (absences)
```


Best Solution space group P 212121

Reindex operator:
Laue group probability:
Systematic absence probability:
Total probability:
Space group confidence:
Laue group confidence
Unit cell: 34.1654 .8
1.76 - Resolution range used for Laue group search
17.00 to
17.00 to 1.78 - Resolution range in file, used for systematic absence check Number of batches in file:100

Pseudo-cubic example

Cell: 79.15 81.33 8I.I5 90.00 90.00 $90.00 \quad \mathrm{a} \approx \mathrm{b} \approx \mathrm{c}$

Analysing rotational symmetry in lattice group P m -3 m
Scores for each symmetry element
Nelmt Lklhd Z-Cc $\quad \mathrm{CC}$ Rmeas Symmetry \& operator (in Lattice Cell)

Only orthorhombic symmetry operators are present

Pseudo-cubic example

Cell: 79.15 81.33 8I.15 90.00 $90.0090 .00 \quad a \approx b \approx c$

Laue Group			Lklhd	NetZc	Zc+	Zc-	CC	CC-	Rmeas	R-	Delta	ReindexOperator
$=1$	P m m m	***	0.989	8.93	9.59	0.66	0.96	0.07	0.12	0.69	0.0	[$-\mathrm{h},-\mathrm{l},-\mathrm{k}$]
2	P 1 2/m 1		0.003	7.85	9.65	1.80	0.97	0.18	0.09	0.60	0.0	[-h,-l, -k]
3	P $12 / \mathrm{m} 1$		0.003	7.95	9.63	1.68	0.96	0.17	0.10	0.61	0.0	[l,h,k]
4	P 1 $2 / \mathrm{m} 1$		0.003	7.80	9.61	1.81	0.96	0.18	0.11	0.60	0.0	[h,k,l]
5	$\mathrm{P} 4 / \mathrm{mmm}$		0.000	6.69	6.90	0.21	0.69	0.02	0.24	0.75	1.5	[-k, -h, -l]
6	P $4 / \mathrm{mmm}$		0.000	4.55	5.41	0.85	0.54	0.09	0.34	0.68	0.1	[-l, -k, -h]
7	P $4 / \mathrm{m}$		0.000	5.45	7.20	1.75	0.72	0.18	0.20	0.62	1.5	[$-\mathrm{k},-\mathrm{h},-\mathrm{l}$]
8	P 4/m		0.000	4.72	6.53	1.81	0.65	0.18	0.25	0.60	0.1	[-l, -k, -h]
9	P -1		0.000	7.48	9.70	2.22	0.97	0.22	0.07	0.57	0.0	[-h,-l, -k]
10	P $4 / \mathrm{m}$		0.000	4.03	5.96	1.92	0.60	0.19	0.29	0.59	1.4	[-h, -l, -k]
11	P $4 / \mathrm{mmm}$		0.000	4.93	5.63	0.69	0.56	0.07	0.32	0.69	1.4	[$-\mathrm{h},-\mathrm{l},-\mathrm{k}$]
12	C m m m		0.000	4.97	6.67	1.70	0.67	0.17	0.24	0.62	1.5	[$\mathrm{h}-\mathrm{k},-\mathrm{h}-\mathrm{k},-\mathrm{l}]$
13	C $12 / \mathrm{m} 1$		0.000	4.80	6.99	2.19	0.70	0.22	0.21	0.57	1.5	[$-\mathrm{h}-\mathrm{k},-\mathrm{h}+\mathrm{k},-\mathrm{l}$]
14	C $12 / \mathrm{ml}$		0.000	4.51	6.71	2.20	0.67	0.22	0.23	0.58	1.5	[$\mathrm{h}-\mathrm{k},-\mathrm{h}-\mathrm{k},-\mathrm{l}]$
15	C m m m		0.000	3.08	5.01	1.93	0.50	0.19	0.36	0.59	0.1	[-k-l, -k+1,-h]
16	P m -3		0.000	3.35	4.32	0.97	0.43	0.10	0.44	0.63	1.5	[h, k, l]
17	C $12 / \mathrm{m} 1$		0.000	2.58	4.95	2.36	0.49	0.24	0.35	0.56	0.1	[$\mathrm{k}-\mathrm{l},-\mathrm{k}-\mathrm{l},-\mathrm{h}$]
18	C $12 / \mathrm{m} 1$		0.000	2.65	5.01	2.36	0.50	0.24	0.34	0.56	0.1	[-k-l, -k+1,-h]
19	H -3		0.000	2.17	4.56	2.39	0.46	0.24	0.40	0.55	1.5	[$-\mathrm{k}+\mathrm{l},-\mathrm{h}-\mathrm{l}, \mathrm{h}-\mathrm{k}-\mathrm{l}]$
20	H -3		0.000	2.09	4.48	2.39	0.45	0.24	0.40	0.55	1.5	[h-l, -h-k, -h+k-l]
21	H -3		0.000	2.15	4.54	2.39	0.45	0.24	0.39	0.55	1.5	[$-\mathrm{h}+\mathrm{k},-\mathrm{k}-\mathrm{l},-\mathrm{h}-\mathrm{k}+\mathrm{l}]$
22	H -3		0.000	2.20	4.59	2.38	0.46	0.24	0.39	0.55	1.5	[k-l,h-k, h-k-l]
23	C $12 / \mathrm{m} 1$		0.000	3.10	5.42	2.32	0.54	0.23	0.31	0.56	1.4	[-h-l,h-l, -k]
24	C $12 / \mathrm{m} 1$		0.000	3.36	5.67	2.31	0.57	0.23	0.30	0.56	1.4	[$-\mathrm{h}+\mathrm{l},-\mathrm{h}-\mathrm{l},-\mathrm{k}$]
25	C m m m		0.000	3.32	5.29	1.97	0.53	0.20	0.34	0.59	1.4	[-h-l,h-l, k]
26	H -3 m		0.000	-0.01	2.66	2.67	0.27	0.27	0.52	0.54	1.5	[$-\mathrm{h}+\mathrm{k},-\mathrm{k}-\mathrm{l},-\mathrm{h}-\mathrm{k}+\mathrm{l}]$
27	H -3 m		0.000	-0.03	2.65	2.68	0.26	0.27	0.52	0.54	1.5	[$\mathrm{k}-\mathrm{l}, \mathrm{h}-\mathrm{k},-\mathrm{h}-\mathrm{k}-\mathrm{l}$]
28	H -3 m		0.000	-0.13	2.58	2.71	0.26	0.27	0.53	0.53	1.5	[h-l, -h-k, h+k-l]
29	H -3 m		0.000	-0.02	2.66	2.68	0.27	0.27	0.52	0.53	1.5	[$-\mathrm{k}+\mathrm{l},-\mathrm{h}-\mathrm{l}, \mathrm{h}-\mathrm{k}-\mathrm{l}]$
30	P m - 3 m		0.000	2.67	2.67	0.00	0.27	0.00	0.53	0.00	1.5	[h,k,l]

Combining multiple files (and multiple MAD datasets)

Combining multiple files (and multiple MAD datasets)

	Reindex operator	CC	File name
2	[h,k, 1]	0.965	pk_2-001.mtz
3	[h,k, 1]	0.933	pk_180 ${ }^{1}$ - $001 . \mathrm{mtz}$
4	[h, k, l]	0.960	ip_1_001.mtz
5	[h, k, l]	0.958	rm_1_001.mtz

Because of an indexing ambiguity (pseudo-cubic orthorhombic), we must check for consistent indexing between files

Alternative indexing

If the true point group is lower symmetry than the lattice group, alternative valid but nonequivalent indexing schemes are possible, related by symmetry operators present in lattice group but not in point group (note that these are also the cases where merohedral twinning is possible)

> eg if in space group P3 (or P3।) there are 4 different schemes (h, k, l) or $(-h,-k, l)$ or $(k, h,-l)$ or $(-k,-h,-l)$

For the first crystal, you can choose any scheme
For subsequent crystals, the autoindexing will randomly choose one setting, and we need to make it consistent: POINTLESS will do this for you by comparing the unmerged test data to a reference dataset (merged or unmerged)

UNIQUIFY etc

个 Complete sphere of reflections Generate or copy freeR flags

SCALA

Scale symmetry-related intensities together

Scaling

Scaling tries to make symmetry-related and duplicate measurements of a reflection equal, by modelling the diffraction experiment, principally as a function of the incident and diffracted beam directions in the crystal.This makes the data internally consistent.

After scaling, the remaining differences between observations can be analysed to give an indication of data quality, though not necessarily of its absolute correctness.

Measures of internal consistency:

R-factors \& correlation coefficients:

$R_{\text {merge }}\left(R_{\text {sym }}\right)=\Sigma\left|I_{h l}-<I_{h}>|/ \Sigma|<l_{h}>\right|$
traditional overall measures of quality, but increases with multiplicity although the data improves
$R_{\text {meas }}=R_{\text {ri.m. }}=\Sigma \sqrt{ }(n / n-I)\left|I_{h l}-<l_{h}>|/ \Sigma|<I_{h}>\right|$
multiplicity-weighted, better (but larger)
$\left.R_{\text {p.i.m. }}=\Sigma \sqrt{ }(I / n-I)\left|I_{h l}-<I_{h}\right\rangle|/ \Sigma|<I_{h}\right\rangle \mid$
"Precision-indicating R-factor" gets better (smaller) with increasing multiplicity, ie it estimates the precision of the merged <l>
CC pairwise correlation coefficients (see later)

Running SCALA from ccp4i interface

Click if you have anomalous scattering
 (changes the statistics and the outlier rejection)

Job title Gamyal ear Xe

- Cust inise Scala process (default is to refine $\&$ apply scaling)
- Se parate anomalous pairs for merging statistics

F Run Ctruncate \quad to output Wilson plot and SFs after scaling ${ }^{-}$and output a single MTZ file
\square Ensure unique data $\&$ add FreeR column for 0.05 fraction of data.

- Generate Patterson map and do peaksearch to check for pseudo-translations

Running SCALA from ccp4i interface

View Annotated Log in Web Browser
Scala version 3.3.15 Run at 17:31:58 on 21/12/2009 Finished with: ** Normal termination **

Result:

Summary data for Project: Gamma Crystal: Xe1 Dataset: Xe1

	Overall	InnerShell	OuterShell
Low resolution limit	17.00	17.00	1.88
High resolution limit	1.78	5.63	1.78
Rmerge	0.034	0.025	0.196
Rmerge in top intensity bin	0.021	-	-
Rmeas (within I+/I-)	0.046	0.034	0.261
Rmeas (all I+ \& I-)	0.059	0.056	0.264
Rpim (within I+/I-)	0.030	0.023	0.171
Rpim (all I+ \& I-)	0.029	0.030	0.133
Fractional partial bias	-0.003	-0.002	-0.010
Total number of observations	44572	1443	4824
Total number unique	12130	435	1403
Mean((I)/sd(I))	18.0	30.0	5.6
Completeness	95.1	93.9	77.4
Multiplicity	3.7	3.3	3.4
Anomalous completeness	88.5	92.2	65.1
Anomalous multiplicity	2.1	2.1	2.0
DelAnom correlation between half-sets	0.539	0.762	-0.024
Mid-Slope of Anom Normal Probability	1.399		-

Outlier rejection and statistics assume that there is anomalous scattering, ie I+ differs from I-
Average unit cell: 34.1654 .8068 .0090 .0090 .0090 .00
Space group: P 212121
Average mosaicity: 0.98
Minimum and maximum SD correction factors: Fulls 1.09 2.60 Partials 1.73 16.73
Dataset: Gamma/Xe1/Xe1
written as averaged data to output file /Users/pre/Projects/Xtal/Temp/Examples_2_1_mtz.tmp
Maximum resolution: 1.78 A

Graphs: Analyses against "batch" (image number or "time")

- check for level of radiation damage
if you cut back from the end, there is a trade-off between damage and completeness
- check for bad images or regions

A bad case: two crystals, both dying, both incomplete

The relative B-factor gives a resolution-dependent scale factor as a function of "time" (dose): average radiation damage decay is greater at high resolution

$$
k(\text { time })=\exp \left[-2 B(\text { time }) \sin ^{2} \theta / \lambda^{2}\right]
$$

Graph of $\mathrm{R}_{\text {merge }}$ vs batch may also detect individual bad images, or bad regions, that should be investigated or rejected

One bad (weak) image

Bad region where

 integration had gone wrong
Graph of $\mathrm{R}_{\text {merge }}$ vs batch may also detect individual bad images, or bad regions, that should be investigated or rejected

Omitting bad image

Reprocessed

Analyses against intensity

$R_{\text {merge }}$ vs. I not generally useful (since R is a fractional measure, it will always be large for small I), but the value in the top intensity bin should be small

Improved estimate of $\sigma(I)$

The error estimate $\sigma(\mathrm{I})$ from the integration program is too small particularly for large intensities. A "corrected" value may be estimated by increasing it for large intensities such that the mean scatter of scaled observations on average equals $\sigma^{\prime}(I)$, in all intensity ranges

Corrected $\sigma^{\prime}(\mathrm{lhl})^{2}=\operatorname{SDfac}^{2}\left[\sigma^{2}+\mathrm{SdB}<\mathrm{I}_{\mathrm{h}}>+\left(\mathrm{SdAdd}<\mathrm{l}_{\mathrm{h}}>\right)^{2}\right]$

SDfac, SdB and SdAdd are adjustable parameters

Analyses against resolution

What is the real resolution? not an easy question to answer
May depend on what you want the data for: more stringent for experimental phasing than for refinement
Anisotropic data needs a less stringent overall cut-off to keep best data

$\mathrm{R}_{\text {merge }}$ is not particularly useful: it gets higher at high resolution

$<l / \sigma(\mathrm{I})>$ after merging (blue line) should be > ~ I-2

CC between random halfdatasets should be $>\sim 0.5$

Completeness

Data completeness is important, preferably in all resolution shells, though you can probably get away with some incompleteness at the outer edge.

See James Holton's movies for an illustration of the importance of completeness http://ucxray.berkeley.edu/~jamesh/movies/

Completeness

Data completeness is important, preferably in all resolution shells, though you can probably get away with some incompleteness at the outer edge.

Completeness

Data completeness is important, preferably in all resolution shells, though you can probably get away with some incompleteness at the outer edge.

Cumulative \%completeness \& Anom\%cmpl v Batch for all runs

84.93,109.0

Tables in File
>>> Scales v rotation range, New
Analysis against all Batches for all runs, New
Analysis against resolution, New
Analysis against resolution, with \& without anomalous (Ov), New Analysis against intensity, New

Graphs in Selected Table

Rmerge v Batch for all n Cumulative \%completen Imean \& RMS Scatter Imean/RMS scatter Number of rejects

Cumulative completeness against batch

X Loggraph g.log

| File Appearance Edit Utilities | Help |
| :--- | :--- | :--- |

Cumulative \%completeness \& Anom\%cmpl v Batch for all runs

0,0

Tables in File

>>> Scales v rotation range, Xe1
Analysis against all Batches for all runs, $X_{e 1}$
Analysis against resolution, Xe1
Analysis against resolution, with \& without anomalous (Ov), Xe1 Analysis against intensity, Xe1

Graphs in Selected Table

Imean/RMS scatter
Number of rejects
\& Anom\%cmpl v Batch for
11

Graph not yet available!

Outliers

Detection of outliers is easiest if the multiplicity is high
Removal of spots behind the backstop shadow does not work well at present: usually it rejects all the good ones, so tell Mosflm where the backstop shadow is.

Reasons for outliers

- outside reliable area of detector (eg behind shadow) specify backstop shadow, calibrate detector
- ice spots
do not get ice on your crystal!
- multiple lattices
find single crystal
- zingers
- bad prediction (spot not there)
improve prediction
- spot overlap

lower mosaicity, smaller slice, move detector back
deconvolute overlaps

Detecting anomalous signals

The data contains both l+ (hkl) and l- (-h-k-l) observations and we can detect whether there is a significant difference between them.

Detecting anomalous signals

The data contains both I+ (hkl) and l- (-h-k-l) observations and we can detect whether there is a significant difference between them.

UNIQUIFY etc

Produce statistics on data quality

Estimation of amplitude |F| from intensity I

If we knew the true intensity J then we could just take the square root

$$
|F|=\sqrt{ } J
$$

But measured intensities I have an error $\sigma(I)$ so a small intensity may be measured as negative.

The "best" estimate of $|\mathrm{F}|$ larger than $\sqrt{ } \mid$ for small intensities $(<\sim 3 \sigma(I))$ to allow for the fact that we know than $|\mathrm{F}|$ must be positive
[c]truncate estimates $|F|$ from I and $\sigma(I)$ using the average intensity in the same resolution range: this give the prior probability $p(J)$

$$
\mathrm{E}(F ; I, \sigma(I))=\int_{0} F p(I ; J, \sigma(I)) p(J) d J
$$

Intensity statistics

We need to look at the distribution of intensities to detect twinning
Assuming atoms are randomly placed in the unit cell, then

$$
\begin{aligned}
& <l>(s)=<F F^{*}>(s)=\Sigma_{j} g(j, s)^{2} \\
& \quad \text { where } g(j, s) \text { is the scattering from atom } j \text { at } s=\sin \theta / \lambda
\end{aligned}
$$

$$
<1>(s)=C \exp \left(-2 B s^{2}\right)
$$

Wilson plot: $\log (<\mid>(s))$ vs s^{2}
This would be a straight line if all the atoms had the same B-factor

Average intensity falls off with resolution, mainly because of atomic motions (B-factors)

For the purposes of looking for crystal pathologies, we are not interested in the variation with resolution, so we can use "normalised" intensities which are independent of resolution

Normalised intensities: relative to average intensity at that resolution

$$
\begin{aligned}
& Z(h)=\left.I(h)|<l(\mathrm{~s})>\approx| E\right|^{2} \\
& <Z(\mathrm{~s})>=1.0 \text { by definition } \\
& <Z^{2}(\mathrm{~s}) \gg 1.0 \text { depending on the distribution }
\end{aligned}
$$

$<Z^{2}(s)>$ is larger if the distribution of intensities is wider: it is the 2 nd moment ie the variance (this is the 4th moment of E) many weak reflections

Twinning by (pseudo)merohedry

Two crystals whose lattices overlap (nearly) exactly: this can happen when the true symmetry is lower than the lattice symmetry

Measured intensities are the sum of two different reflections related by the twin operator, so a weak intensity is likely to be inflated by a stronger one too few weak intensities

Examples

Cumulative intensity distribution
2nd moment of Z or $\left\langle E^{4}>\right.$

C-terminal domain of gp2 protein from phage SPPI (unpublished) perfect twin

Ctruncate: L- and H-tests

Cumulative distribution of L (L-test)

$L=(I 1-I 2) /(I 1+I 2)$
I1 \& I2 close in reciprocal space

Cumulative distribution of H (H-test)
(Partial twinning test)

cumulative distribution function for $[\mathrm{H} \mid$

Tables in File
Acentric moments of E using Truncate method H test for twinning (operator $\mathrm{k}, \mathrm{h},-\mathrm{l}$)
L test for twinning
Wilson plot
Truncate style Wilson plot
Graphs in Selected Table
cumulative distribution function for $|\mathrm{H}|$
$H=(I 1-I 2) /(I 1+I 2)$
I1 \& 12 related by twin symmetry

Other features of the intensity distribution which may obscure or mimic twinning

Translational non-crystallographic symmetry: whole classes of reflections may be weak eg h odd with a NCS translation of $\sim 1 / 2,00$
<|> over all reflections is misleading, so Z values are inappropriate The reflection classes should be separated (not yet done)

Anisotropy: <l> is misleading so Z values are wrong ctruncate applies an anisotropic scaling before analysis

Overlapping spots: a strong reflection can inflate the value of a weak neighbour, leading to too few weak reflections this mimics the effect of twinning

Summary

Questions \& Decisions

-What is the point group (Laue group)?
-What is the space group?

- Is there radiation damage: should data be cut away from the end (possibly at the expense of resolution)?
- What is the best resolution cut-off?
- Is there anomalous signal (if you expect one)?
- Are the data twinned?
- Is this dataset better or worse than ones you have already?

Acknowledgements

Andrew Leslie
Harry Powell
Ralf Grosse-Kunstleve
Kevin Cowtan
Martyn Winn \& CCP4 gang
Peter Briggs
Airlie McCoy
Graeme Winter
Clemens Vonrhein
Eleanor Dodson
Andrey Lebedev
Norman Stein
George Sheldrick
many discussions
many discussions
cctbx
clipper, simplex minimiser, C++ advice
ccp4 libraries
ccp4i
C++ advice, code etc
testing \& bug finding
testing \& bug finding
many discussions
intensity statistics \& twinning
ctruncate
discussions on symmetry detection

