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This paper describes various components of the macromole-

cular crystallographic refinement program REFMAC5, which

is distributed as part of the CCP4 suite. REFMAC5 utilizes

different likelihood functions depending on the diffraction

data employed (amplitudes or intensities), the presence of

twinning and the availability of SAD/SIRAS experimental

diffraction data. To ensure chemical and structural integrity

of the refined model, REFMAC5 offers several classes of

restraints and choices of model parameterization. Reliable

models at resolutions at least as low as 4 Å can be achieved

thanks to low-resolution refinement tools such as secondary-

structure restraints, restraints to known homologous struc-

tures, automatic global and local NCS restraints, ‘jelly-body’

restraints and the use of novel long-range restraints on atomic

displacement parameters (ADPs) based on the Kullback–

Leibler divergence. REFMAC5 additionally offers TLS

parameterization and, when high-resolution data are

available, fast refinement of anisotropic ADPs. Refinement

in the presence of twinning is performed in a fully automated

fashion. REFMAC5 is a flexible and highly optimized

refinement package that is ideally suited for refinement across

the entire resolution spectrum encountered in macromole-

cular crystallography.
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1. Introduction

As a final step in the process of solving a macromolecular

crystal (MX) structure, refinement is carried out to maximize

the agreement between the model and the X-ray data. Model

parameters that are optimized in the refinement process

include atomic coordinates, atomic displacement parameters

(ADPs), scale factors and, in the presence of twinning, twin

fraction(s). Although refinement procedures are typically

designed for the final stages of MX analysis, they are also often

used to improve partial models and to calculate the ‘best’

electron-density maps for further model (re)building.

Refinement protocols are therefore an essential component

of model-building pipelines [ARP/wARP (Perrakis et al.,

1999), SOLVE/RESOLVE (Terwilliger, 2003) and Buccaneer

(Cowtan, 2006)] and are of paramount importance in guiding

manual model updates using molecular-graphics software

[Coot (Emsley & Cowtan, 2004), O (Jones et al., 1991) and

XtalView (McRee & Israel, 2008)].

The first software tools for MX refinement appeared in

the 1970s. Real-space refinement using torsion-angle para-

meterization was introduced by Diamond (1971). This was

followed a few years later by reciprocal-space algorithms for

the refinement of individual atomic parameters with added

energy (Jack & Levitt, 1978) and restraints (Konnert, 1976) in

order to deliver chemically reasonable models. The energy
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and restraints approaches differ only in terminology as they

use similar information and both can be unified using a

Bayesian formalism (Murshudov et al., 1997). Early programs

used the well established statistical technique of least-squares

residuals with equal weights on all reflections (Press et al.,

1992), with gradients and second derivatives (if needed)

calculated directly. This changed when Fourier methods, which

were developed for small-molecule structure refinement

(Booth, 1946; Cochran, 1948; Cruickshank, 1952, 1956), were

formalized for macromolecules (Ten Eyck, 1977; Agarwal,

1978). The use of the FFT for structure-factor and gradient

evaluation (Agarwal, 1978) sped up calculations dramatically

and the refinement of large molecules using relatively modest

computers became realistic. Later, the introduction of mole-

cular dynamics (Brünger, 1991), the generalization of the

FFT approach for all space groups (Brünger, 1989) and the

development of a modular approach to refinement programs

(Tronrud et al., 1987) dramatically changed MX solution

procedures. Also, the introduction of the very robust and

popular small-molecular refinement program SHELXL

(Sheldrick, 2008) to the macromolecular community allowed

routine analysis of high-resolution MX data, including the

refinement of merohedral and non-merohedral twins.

More sophisticated statistical approaches to MX structure

refinement started to emerge in the 1990s. Although the basic

formulations and most of the necessary probability distribu-

tions used in crystallography were developed in the 1950s and

1960s (Luzzati, 1951; Ramachandran et al., 1963; Srinivasan &

Ramachandran, 1965; see also Srinivasan & Parthasarathy,

1976, and references therein), their implementation for MX

refinement started in the middle of the 1990s (Pannu & Read,

1996; Bricogne & Irwin, 1996; Murshudov et al., 1997). It

should be emphasized that prior to the application of

maximum-likelihood (ML) techniques in MX refinement, the

importance of advanced statistical approaches to all stages of

MX analysis had been advocated by Bricogne (1997) for two

decades. Nowadays, most MX refinement programs offer

likelihood targets as an option. Although ML can be very well

approximated using the weighted least-squares approach in

the very simple case of refinement against structure-factor

amplitudes (Murshudov et al., 1997), ML has the attractive

advantage that it is relatively easy (at least theoretically) to

generalize for the joint utilization of a variety of sources of

observations. For example, it was immediately extended to use

experimental phase information (Bricogne, 1997; Murshudov

et al., 1997; Pannu et al., 1998). In the last two decades, there

have been many developments of likelihood functions towards

the exploitation of all available experimental data for refine-

ment, thus increasing the reliability of the refined model in the

final stages of refinement and improving the electron density

used in model building in the early stages of MX analysis

(Bricogne, 1997; Skubák et al., 2004, 2009).

MX crystallography can now take advantage of highly

optimized software packages dealing with all of the various

stages of structure solution, including refinement. There are

several programs available that either are designed to perform

refinement or offer refinement as an option. These include

BUSTER/TNT (Blanc et al., 2004), CNS (Brünger et al., 1998),

MAIN (Turk, 2008), MOPRO (Guillot et al., 2001), phenix.

refine (Adams et al., 2010), REFMAC5 (Murshudov et al.,

1997), SHELXL (Sheldrick, 2008) and TNT (Tronrud et al.,

1987). While MOPRO was specifically designed for niche

ultrahigh-resolution refinement and is able to model defor-

mation density, all of the other programs can deal with a

multitude of MX refinement problems and produce high-

quality electron-density maps, although with different

emphases and strengths.

This contribution describes the various components of

the macromolecular crystallographic refinement program

REFMAC5, which is distributed as part of the CCP4 suite

(Collaborative Computational Project, Number 4, 1994).

REFMAC5 is a flexible and highly optimized refinement

package that is ideally suited for refinement across the entire

resolution spectrum that is encountered in macromolecular

crystallography.

2. Target functions in REFMAC5

As in all other refinement programs, the target function

minimized in REFMAC5 has two components: a component

utilizing geometry (or prior knowledge) and a component

utilizing experimental X-ray knowledge,

ftotal ¼ fgeom þ wfxray; ð1Þ
where ftotal is the total target function to be minimized, con-

sisting of functions controlling the geometry of the model and

the fit of the model parameters to the experimental data, and

w is a weight between the relative contributions of these two

components. In macromolecular crystallography, the weight

is traditionally selected by trial and error. REFMAC5 offers

automatic weighting, which is based on the fact that both

components are the natural logarithm of a probability distri-

bution. However, this ‘automatic’ weight may lead to unrea-

sonable deviations from ideal geometry (either too tight or too

relaxed) in some cases, as the ideal geometry is difficult to

describe statistically. For these cases, the weight parameter

may need to be selected manually to produce more reasonable

geometry, e.g. such that the root-mean-square deviation of the

bond lengths from the ideal values is 0.02 Å and at resolutions

lower than 3 Å perhaps even smaller.

From a Bayesian viewpoint (O’Hagan, 1994), these func-

tions have the following probabilistic interpretation (ignoring

constants which are irrelevant for minimization purposes):

ftotal ¼ � log½Pposteriorðmodel; obsÞ�
fgeom ¼ � log½PpriorðmodelÞ�
fxray ¼ � log½Plikelihoodðobs; modelÞ�: ð2Þ

From this point of view, MX refinement is similar to a well

known technique in statistical analysis: maximum posterior

(MAP) estimation. The model parameters are linked with the

experimental data via fxray, i.e. likelihood is a mechanism that

controls information flow from the experimental data to the

derived model. Consequently, it is important to design a
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likelihood function that allows optimal information transfer

from the data to the derived model. fgeom ensures that the

derived model is consistent with the presumed chemical and

structural knowledge. This function plays the role of regular-

ization, reduction of the effective number of parameters and

transfer of known information to the new model. If care is not

taken, then wrong information may be transferred to the

model; removing the effect of such errors may be difficult

if possible at all. The design of such functions should be

performed using verifiable invariant information and it should

be testable and revisable during the refinement and model-

building procedures.

Functions dealing with geometry usually depend only on

atomic parameters. We are not aware of any function used in

crystallography that deals with the prior geometry probability

distributions of overall parameters. A possible reason for the

lack of interest in (and necessity of) this type of function may

be that, despite popular belief, the statistical problem in

crystallography is sufficiently well defined and that the main

problems are those of model parameterization and comple-

tion.

The existing refinement programs differ in the target

functions and optimization techniques used to derive model

parameters. Most MX programs use likelihood target func-

tions. However, their form, implementations and para-

meterizations are different. Therefore, it should not come as a

surprise if different programs give (slightly) different results in

terms of model parameters, electron-density maps and relia-

bility factors (such as R and Rfree).

2.1. X-ray component

The X-ray likelihood target functions used in REFMAC5

are based on a general multivariate probability distribution of

E observations given M model structure factors. This function

is derived from a multivariate complex Gaussian distribution

of N = E + M structure factors for acentric reflections and

from a multivariate real Gaussian distribution for centric

reflections and has the following form:

P ¼

jCMj
QE
i¼1

jFij
�EjCNj

R2�
0

. . .
R2�
0

PprðaÞ

� exp �PN
i;j¼1

Fiðai;j � ci�E;j�EÞFj

" #
da acentric

jCMj
ð2�ÞEjCNj

� �1=2 P
�1¼�1;1
�1¼�1;2

. . .
P

�E¼�E;1
�E¼�E;2

PprðaÞ

� exp � 1

2

PN
i;j¼1

Fiðai;j � ci�E;j�EÞFj

" #
centric

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

; ð3Þ

where P = P(|F1|, . . . , |FE|; FE+1, . . . , FN), Fi = |Fi|exp(��i},

|F1|, . . . , |FE| denote the observed amplitudes, FE+1, . . . , FN

are the model structure factors, CN is the covariance matrix

with the elements of its inverse denoted by aij, CM is the

bottom right square submatrix of CN of dimension M with the

elements of its inverse denoted by cij. We define cij = 0 for i � 0

or j � 0. |CN| and |CM| are the determinants of matrices CN and

CM, a = (�1, . . . , �E) is the vector of the unknown phases of

the observations that need to be integrated and PprðaÞ is a

probability distribution expressing any prior knowledge about

the phases.

In the simplest case of one observation, one model and no

prior knowledge about phases, the integral in (3) can be

evaluated analytically. In this case, the function follows a Rice

distribution (Bricogne & Irwin, 1996), which is a non-central

�2 distribution of |Fo|2/� and |Fo|2/2� with non-centrality

parameters D2|Fc|
2/� and D2|Fo|2/2� with one and two degrees

of freedom for centric and acentric reflections, respectively

(Stuart & Ord, 2009),

PðjFoj;FcÞ ¼

2jFoj
�

exp � jFoj2 þ D2jFcj2
�

� �

�I0 2
jFojDjFcj

�

� �
acentric

2

��

� �1=2

exp � jFoj2 þ D2jFcj2
2�

� �

� cosh
jFojDjFcj

�

� �
centric

8>>>>>>>>>>><
>>>>>>>>>>>:

;

ð4Þ

where D in its simplest interpretation is hcos(�xs)i, a Luzzati

error parameter (Luzzati, 1952) expressing errors in the

positional parameters of the model, Fc is the model structure

factor, |Fo| is the observed amplitude of the structure factor

and � is the uncertainty or the second central moment of the

distribution. Both � and D enter the equation as part of the

covariance matrices CN and CM from (3). � is a function of

the multiplicity of the Miller indices (" factor), experimental

uncertainties (�o), model completeness and model errors. For

simplicity, the following parameterization is used:

� ¼ 2�2
o þ "�mod acentric

�2
o þ "�mod centric

�
: ð5Þ

The current version of REFMAC5 estimates D and �mod in

resolution bins. Working reflections are used for estimation of

D and free reflections are used for �mod estimation. Although

this simple parameterization works in many cases, it may give

misleading results for data from crystals with pseudo transla-

tion, OD disorder or modulated crystals in general. Currently,

there is no satisfactory implementation of the error model to

account for these cases.

2.2. Incorporation of experimental phase information in

model refinement

2.2.1. MLHL likelihood. MLHL likelihood (Bricogne, 1997;

Murshudov et al., 1997; Pannu et al., 1998) is based on a special

case of the probability distribution (3) where we have one

observation, one model and phase information derived from

an experiment available as a prior distribution Ppr(�),
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PðjFoj;FcÞ ¼

jFoj
��

R2�
0

Pprð�Þ

� exp � jFo � DFcj2
�

� �
d� acentric

1

2��

� �1=2P
�¼�1
�¼�2

Pprð�Þ

� exp � jFo � DFcj2
2�

� �
centric

8>>>>>>>>>>>><
>>>>>>>>>>>>:

; ð6Þ

where Fo = |Fo|exp(��), Fc = |Fc|exp(��c), � is the unknown

phase of the structure factor and �1 and �2 are its possible

values for a centric reflection. The prior phase probability

distribution Ppr(�) is usually represented as a generalized von

Mises distribution (Mardia & Jupp, 1999) and is better known

in crystallography as a Hendrickson–Lattman distribution

(Hendrickson & Lattman, 1970),

Pð�Þ ¼ N exp½A cosð�Þ þ B sinð�Þ þ C cosð2�Þ þ D sinð2�Þ�;
ð7Þ

where A, B, C and D are coefficients of the Fourier transfor-

mation of the logarithm of the phase probability distribution

and N is the normalization coefficient. The distribution is

unimodal when C and D are zero; otherwise, it is a bimodal

distribution that reflects the possible phase uncertainty in

experimental phasing. For centric reflections C and D are zero.

2.2.2. SAD/SIRAS likelihood. The MLHL likelihood is

dependent on the reliability and accuracy of the prior distri-

bution Ppr(�). However, the phase distributions after density

modification (or even after phasing), which are usually used as

Ppr(�), often suffer from inaccurate estimation of the phase

errors. Furthermore, MLHL [as well as any other special case

of (3) with a non-uniform Ppr(�)] assumes independence of

the prior phases from the model phases. These shortcomings

can be addressed by using experimental information directly

from the experimental data, instead of from the Ppr(�)

distributions obtained in previous steps of the structure-

solution process. Currently, SAD and SIRAS likelihood

functions are implemented in REFMAC5.

The SAD probability distribution (Skubák et al., 2004) is

obtained from (3) by setting E = 2, M = 2, Ppr(�) = constant

and |F1| = |Fo
+|, |F2| = |(Fo

�)*|, F3 = Fc
+, F4 = (Fc

�)*, where F + and

F� are the structure factors of the Friedel pairs. The model

structure factors are constructed using the current parameters

of the protein, the heavy-atom substructure and the inputted

anomalous scattering parameters. Similarly, the SIRAS func-

tion (Skubák et al., 2009) is a special case of (3) with E = 3,

M = 3, Ppr(�) = constant and |F1| = |Fo
N|, |F2| = |Fo

+|,

|F3| = |(Fo
�)*|, F4 = Fc

N, F5 = Fc
+, F6 = (Fc

�)*, where |F1| and F4

correspond to the observation and the model of the native

crystal, respectively, and |F2|, |F3|, F5 and F6 refer to the Friedel

pair observations and models of the derivative crystal. If any

of the E observations are symmetrically equivalent, for

instance centric Friedel pair intensities, the equation is

reduced appropriately so as to only include non-equivalent

observations and models.

The incorporation of prior phase information by the

refinement function is especially useful in the early and middle

stages of model building and at all stages of structure solution

at lower resolutions, owing to the improvement in the obser-

vation-to-parameter ratio. The refinement of a well resolved

high-resolution structure is often best achieved using the

simple Rice function.

Fig. 1 shows the effect of various likelihood functions on

automatic model building using ARP/wARP (Perrakis et al.,

1999).

2.3. Twin refinement

The function used for twin refinement is a generalization of

the Rice distribution in the presence of a linear relationship

between the observed intensities. This function has the form

PðIo;modelÞ ¼ R
F

PðIo;FÞPðF;modelÞ dF

PðIo;FÞ ¼ No exp � P
related

reflections

½Ioj � f ð�;FÞ�2
2�2

oj

 !

PðF;modelÞ ¼ Nmodel

Q
exp � jFi � Fc;ij2

��

� �
f ð�;FÞ ¼P

�ijjFjj2; ð8Þ

where No and Nmodel are normalization coefficients. In the first

equation, the first term inside the integral, P(Io; F), represents

the probability distribution of observations if ‘ideal’ structure

factors are known. Here, all reflections that are twinned and

that can be grouped together are included. Models repre-

senting the data-collection instrument, if available, could be

added to this term. The second term, P(F; model), represents a

probability distribution of the ‘ideal’ structure factors should

an atomic model be known for a single crystal. Here, all
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Figure 1
Fraction of the model correctly built by ARP/wARP v.7.0 iterated with
REFMAC5 using different target functions. The maps inputted to model
building were prepared by CRANK (Ness et al., 2004). The sample
consists of 102 data sets described in Skubák et al. (2010).

electronic reprint



reflections from the asymmetric unit that contribute to the

observed ‘twinned’ intensities are included. If the data were to

come from more than one crystal or if, for example, SAD

should be used simultaneously with twinning, then this term

would need to be modified appropriately. Fc is a function of

atomic and overall parameter D. Overall parameters also

include � and twin-fraction parameters. f represents the way

structure factors from the asymmetric unit contribute to the

particular ‘twinned’ intensity. The above formula is more

symbolic rather than precise; further details of twin refinement

will be published elsewhere.

REFMAC5 performs the following preparations before

starting refinement against twinned data.

(i) Identify potential (pseudo)merohedral twin operators by

analyses of cell/space-group combination using the algorithm

developed by Lebedev et al. (2006).

(ii) Calculate Rmerge for each potential twin operator and

filter out twin operators for which Rmerge is greater than 0.5 or

a user-defined value.

(iii) Estimate twin fractions for the remaining twin domains

and filter out those with small twin fractions (the default value

is 0.05).

(iv) Make sure that the point group and twin operators form

a group. Strictly speaking this stage is not necessary, but it

makes bookkeeping easy.

(v) Perform twin refinement using the remaining twin

operators. Twin fractions are refined at every cycle.

All integrals necessary for evaluation of the minus log-

likelihood function and its derivatives with respect to the

structure factors are evaluated using the Laplace approxima-

tion (McKay, 2003).

2.4. Modelling bulk-solvent contribution

Typically, a significant part of a macromolecular crystal is

occupied by disordered solvent. Accurate modelling of this

part of the crystal is still an unsolved problem of MX. The

contribution of bulk solvent to structure factors is strongest at

low resolution, although its effect at high resolution is still

non-negligible.

The absence of good models for disordered solvent may be

one of the reasons why R factors in MX are significantly higher

than those in small-molecular crystallography. For small

molecules R factors can be around 1%, whereas for MX they

are rarely less than 10% and more often around 20% or even

higher.

REFMAC5 uses two types of bulk (disordered) solvent

models. One of them is the so-called Babinet’s bulk-solvent

model, which is based on the assumption that the only

difference between solvent and protein at low resolution is

their scale factor (Tronrud, 1997). Here, we use a slight

modification of the formulation described by Tronrud (1997)

and assume that if protein electron density is convoluted using

the Gaussian kernel and multiplied by an appropriate scale

factor, then protein and solvent electron densities are equal,

�solvent þFðkbabinetÞ � �protein ¼ constant ()
Fsolvent þ kbabinetFprotein ¼ 0 ()

Fsolvent ¼ �kbabinetFprotein¼)
Ftotal0 ¼ Fsolvent þ Fprotein ¼ ð1 � kbabinetÞFprotein; ð9Þ

where * denotes convolution, F denotes the Fourier transform

and kbabinet = kbabinet0 exp(�Bbabinet|s|2/4). Here, we used the

convolution theorem, which states that the Fourier transform

of the convolution of two functions is the product of their

Fourier transforms.

The second bulk-solvent model is derived similarly to that

described by Jiang & Brünger (1994). The basic assumption is

that disordered solvent atoms are uniformly distributed over

the region of the asymmetric unit that is not occupied by the

atoms of the modelled part of the crystal structure. The region

of the asymmetric unit occupied by the atomic model is

masked out. Any holes inside this mask are removed using a

cavity-detection algorithm. A constant value is assigned

outside this region and the structure factors Fmask are calcu-

lated using an FFT algorithm. These structure factors, multi-

plied by appropriate scale factors (estimated during the

scaling procedure), are added to those calculated from the

atomic model. Additionally, various mask parameters may

optionally be optimized.

One should be careful with bulk-solvent corrections,

especially when the atomic model is incomplete. This type of

bulk-solvent model may result in smeared-out electron density

that may reduce the height of electron density in less-ordered

and unmodelled parts of the crystal.

The final total structure factors with scale and solvent

contributions included take the following form:

Ftotal ¼ koverallkanisoð1 � kbabinetÞðFprotein þ kmaskFmaskÞ
koverall ¼ koverall0 expð�Boveralljsj2=4Þ
kbabinet ¼ kbabinet0 expð�Bbabinetjsj2=4Þ

kmask ¼ kmask0 expð�Bmaskjsj2=4Þ
kaniso ¼ expð�sTUanisos=4Þ; with traceðUanisoÞ ¼ 0; ð10Þ

where the ks are scale factors, s is the reciprocal-space vector,

|s| is the length of this vector, Uaniso is the crystallographic

anisotropic tensor that obeys crystal symmetry, Fmask is the

contribution from the mask bulk solvent and Fprotein is the

contribution from the protein part of the crystal. Usually,

either mask or Babinet bulk-solvent correction is used.

However, sometimes their combination may provide better

statistics (lower R factors) than either individually.

The overall parameters of the solvent models, the overall

anisotropy and the scale factors are estimated using a least-

squares fit of the amplitude of the total structure factors to the

observed amplitudes,P
working

reflections

ðjFoj � jFtotaljÞ2�!min: ð11Þ

In the case of twin refinement, the following function is used

to estimate overall parameters including twin fractions (details

of twin refinement will be published elsewhere),
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P
working

reflections

maxðIo;�3:0 � �oÞ � f ð�;FcÞ
½maxðIo; 0:001 � �oÞ�1=2 þ ½f ð�; Fc�1=2

� �2

�!min; ð12Þ

where f(�, F) is as defined in (8).

Both (11) and (12) are minimized using the Gauss–Newton

method with eigenvalue filtering to solve linear equations,

which ensures that even very highly correlated parameters can

be estimated simultaneously. However, one should be careful

in interpretating these parameters as the system is highly

correlated.

Once overall parameters such as the scale factors and twin

fractions have been estimated, REFMAC5 estimates the

overall parameters of one of the abovementioned likelihood

functions and evaluates the function and its derivatives with

respect to the atomic parameters. A general description of this

procedure can be found in Steiner et al. (2003).

2.5. Geometry component

The function controlling the geometry has several compo-

nents.

(i) Chemical information about the constituent blocks (e.g.

amino acids, nucleic acids, ligands) of macromolecules and the

covalent links between them.

(ii) Internal consistency of macromolecules (e.g. NCS).

(iii) Structural knowledge (known structures, restraints on

current interatomic distances, secondary structures).

The first component is used by all programs and has been

tabulated in an mmCIF dictionary (Vagin et al., 2004) now

used by several programs, including REFMAC5, phenix.refine

(Adams et al., 2010) and Coot (Emsley & Cowtan, 2004). The

current version of the dictionary contains around 9000 entries

and several hundred covalent-link descriptions. Any new

entries may be added using one of several programs, including

Sketcher (Vagin et al., 2004) from CCP4 (Collaborative

Computational Project, Number 4, 1994), JLigand (unpub-

lished work), PRODRG (Schüttelkopf & van Aalten, 2004)

and phenix.elbow (Adams et al., 2010).

Standard restraints on the covalent structure have the

general form

P
bonds

1

�2
b

ðbm � biÞ2; ð13Þ

where bm represents a geometric parameter (e.g. bonds,

angles, chiralities) calculated from the model and bi is the ideal

value of this particular geometric parameter as tabulated in

the dictionary.

Apart from ! (the angle of the peptide bond) and � (the

angles of amino-acid side chains), torsion angles in general are

not restrained by default. However, the user can request to

restrain a particular torsion angle defined in the dictionary or

can define general torsion angles and use them as restraints. In

general, it is not clear how to handle the restraint on torsion

angles automatically, as these angles may depend on the

covalent structure as well as the chemical environment of a

particular ligand.

2.6. Noncrystallographic symmetry restraints

2.6.1. Automatic NCS definition. Automatic NCS identifi-

cation in REFMAC5 is performed using the following proce-

dure.

(i) Align the sequences of all chains with all chains using the

dynamic alignment algorithm (Needleman & Wunsch, 1970).

(ii) Accept the alignment if the number of aligned residues

is more than k (default 15) residues and the sequence identity

for aligned residues is more than �% (default 80%).

(iii) Calculate the global root-mean-square deviation

(r.m.s.d.) using all aligned residues.

(iv) Calculate the average local r.m.s.d. using the formula

1

N � k þ 1

PN�kþ1

i¼1

1

ni

Pkþi

j¼i

P
l2Nj

r2
l ; rl ¼ xl � ðRiyl þ tiÞ; ð14Þ

where N is the number of aligned residues, j indexes the

aligned residues, Nj is the number of corresponding atoms in

residue j, nj is the number of atoms in the ith group, rl is the

vector of differences between corresponding atomic positions

and Rj and tj are the rotation and translation that give the best

superposition between atoms in group i. To calculate the

r.m.s.d., it is not necessary to calculate the rotation and

translation operators explicitly or to apply these transforma-

tions to atoms. Rather, it is achieved implicitly using

Procrustes analysis, as described, for example, in Mardia &

Bibby (1979). When k = N, the local and global r.m.s.d.

coincide.

(v) If the r.m.s.d. is less than 	 Å (default 2.5 Å), then we

consider the chains to be aligned.

(vi) Prepare the list of aligned atoms. If after applying the

transformation matrix (calculated using aligned atoms) the

neighbours (waters, ligands) of aligned atoms are super-

imposed, then they are also added to the list of aligned atoms.

(vii) If local NCS is requested, then prepare pairs of

corresponding interatomic distances.

Steps (i)–(v) are performed once during each session of

refinement. Step (vi) is performed during every cycle of

refinement in order to allow conformational changes to occur.

2.6.2. Global NCS. For global NCS restraints, transforma-

tion operators (Rij and tij) that optimally superpose all NCS-

related molecules are estimated and the following residual is

added to the total target function,

P
NCS related

molecules

P
NCS related

atoms

w xi �
1

n

PðRijxj þ tijÞ
����

����
2

; ð15Þ

where the weight w is a user-controllable parameter. Note that

the transformation matrices are estimated using xi and xj and

thus they are dependent on these parameters. Therefore, in

principle the gradient and second-derivative calculations

should take this dependence into account, although this

dependence is ignored in the current version of REFMAC5.

Ignoring the contribution of these terms may reduce the rate

of convergence, although in practice it does not seem to pose a

problem.

2.6.3. Local NCS. The following function (similar to the

implementation in BUSTER) is used for local NCS restraints,
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P
chain pairs i;j

P
di;kl<dmax
dj;kl<dmax

GM �GM;
di;kl � dj;kl

�

� �
; ð16Þ

where GM is the Geman–McClure robust estimator function

(Geman & McClure, 1987), which can be written

GMð�; rÞ ¼ r2

1 þ �2r2
: ð17Þ

Fig. 2 shows that for small values of r this function is similar to

the usual least-squares function. However, it behaves differ-

ently for large r: least-square residuals do not allow confor-

mational changes to occur, whereas this type of function is

more tolerant to such changes.

2.6.4. External structure restraints. The interatomic

distances within the structure being analysed may be similar

to a known (deposited) structure, particularly in localized

regions. In cases where it makes sense, this information can be

exploited in order to aid the refinement of the target structure.

In doing so, the target structure is pulled towards the con-

formation adopted by the known structure. The mechanism

for generic external restraints described by Mooij et al. (2009)

is used for external structure restraints.

In our implementation, structural information from

external known structures is utilized by applying restraints to

the distances between atom pairs based on a presumed atomic

correspondence between the two structures. The following

function is used for external structure restraints,

P
ai2A

P
aj2A

dij<dmax

wextGM �GM;
dij � d�

ij

�ij

� �
; ð18Þ

where the atoms ai belong to the set A of atoms for which a

correspondence is known, dij is the distance between the

positions of atoms ai and aj, d�
ij is the corresponding distance in

the known structure, �ij is the estimated standard deviation

of dij about d�
ij and dmax ensures that atom pairs are only

restrained within localized regions, allowing insensitivity to

global conformational changes. External structure restraints

should be weighted differently to the other geometry com-

ponents in order to allow the restraint strength to be sepa-

rately specified. Consequently, a weight wext is applied, which

should be appropriately chosen depending on the data quality

and resolution, the structural similarity between the external

known structure and the target, and the choice of dmax. The

Geman–McClure function with sensitivity parameter �GM is

used to increase robustness to outliers, as with the local NCS

restraints.

Prior information from the external known structure(s) is

generated using the software tool PROSMART. Specifically,

this includes the atomic correspondence A, distances d�
ij,

standard deviations �ij and the distance cutoff dmax.

Potential sources of prior structural information include

different conformations of the target chain (such as those that

may result from using different crystallization conditions or

in a different binding state) as well as those from homologous

or structurally similar proteins. It is possible to use multiple

known structures as prior information. The combination of

this information results in modified values of d�
ij and �ij as

appropriate. This allows a structure to be refined utilizing

information from a whole class of similar structures, rather

than just a single source. Furthermore, it opens up the future

possibility for multi-crystal co-refinement.

The employed formalism also allows the application of

atomic distance restraints to secondary-structure elements

(and, in principle, other motifs). Consequently, external

restraints may be applied without requiring the prior identi-

fication of known structures similar to the target. This is

intended to help to refine such motifs towards the expected/

presumed local conformation.

This technique has been found to be particularly useful for

low-resolution crystals and in cases where the target structure

is unable to be refined to a satisfactory level. When used

appropriately, external structure restraints should increase

refinement reliability. Consequently, the difference between

the R and Rfree values is expected to decrease in successful

cases.

Fig. 3 shows the refinement statistics resulting from using

external restraints to refine a low-resolution bluetongue

virus VP4 enzyme (Sutton et al., 2007). A sequence-identical

structure solved at a higher resolution is used as prior infor-

mation. Refinement statistics are compared after ten refine-

ment cycles with and without using external restraints. Using

the external restraints results in a 2.8% improvement in Rfree.

Furthermore, the difference between the R and Rfree values is

reduced from 11.5 to 4.3%, suggesting greatly increased

refinement reliability.

2.6.5. ‘Jelly-body’ restraints. The ratio of the number of

observations to the number of adjustable parameters is very
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Figure 2
Behaviour of the Geman–McClure function versus the quadratic (least-
squares) function. For small values of r they look similar, whereas for
large values of r GM is less restrictive than least squares, allowing
conformational changes to occur. Black line, GM = r2/(1 + �2r2) with
� = 0.5; red line, quadratic function r2. This figure was produced using the
software package R (R Development Core Team, 2007).
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small at low resolution. Even after accounting for chemical

restraints, this ratio stays very small and refinement in such

cases is usually unstable. The danger of overfitting is very high;

this is reflected in large differences between the R and Rfree

values. External structure restraints and the use of experi-

mental phase information (described above) provide ways of

dealing with this problem. Unfortunately, it is not always

possible to find similar structures refined at high resolution (or

at least ones that result in a sufficiently successful improve-

ment in refinement statistics) and experimental phase

information is not always available or sufficient. Fortunately,

statistical techniques exist to deal with this type of problem.

Such techniques include ridge regression (Stuart et al., 2009),

the lasso estimation procedure (Tibshirani, 1997) and

Bayesian estimation with prior knowledge of parameters

(O’Hagan, 1994).

REFMAC5 has a regularization function in interatomic

distance space that has the formP
dij;current<dmax

wðdij � dij;currentÞ2 ð19Þ

for pairs of atoms i, j from the same chain, with maximum

radius dmax, which can be controlled (default 4.25 Å). Note

that this term does not contribute to the value of the function

or its gradient; it only changes the second derivative, thus

changing the search direction. It should be noted that a similar

technique has been implemented in CNS (Schröder et al.,

2010).

Note that if all interatomic distances were constrained,

then individual atomic refinement would become rigid-body

refinement. The effect of ‘jelly-body’ restraints is the implicit

parameterization between the rigid body and individual

atoms. This technique has strong similarity to elastic network

model calculations (Trion, 1996). This simple formula has been

found to work surprisingly well.

2.6.6. Atomic displacement parameter restraints. Unlike

positional parameters, where prior knowledge can be designed

using basic knowledge of the chemistry of the building blocks

of macromolecules and analysis of high-resolution structures,

it is not obvious how to design restraints for atomic

displacement parameters (ADPs). Ideally, restraints should

reflect the geometry of the molecules as well as their overall

mobility. Various programs use various restraints (Sheldrick,

2008; Adams et al., 2010; Konnert & Hendrickson, 1980;

Murshudov et al., 1997). In the new version of REFMAC5,

restraints on ADPs are based on the distances between

distributions. If we assume that atoms are represented as

Gaussian distributions, then we are able to design restraints

based on the distance between such distributions.

For a given two distributions in three-dimensional space

P(x) and Q(x), the symmetrized Kullback–Liebler (KL)

divergence (McKay, 2003) is defined as follows:

KLðP;QÞ ¼ R
R3

PðxÞ log
PðxÞ
QðxÞ dx þ R

R3

QðxÞ log
QðxÞ
PðxÞ dx: ð20Þ

It can be verified that the symmetrized KL divergence satisfies

the conditions of a metric distance in the space of distribu-

tions. The KL divergence can also be represented as follows:

KLðP;QÞ ¼ R
R3

½PðxÞ � QðxÞ�flog½PðxÞ� � log½QðxÞ�g dx: ð21Þ

This distance changes more smoothly than the L2 distance

between functions and seems to be a useful criterion for the

design of approximate probability distributions (McKay, 2003;

O’Hagan, 1994).

When both distributions are Gaussian with mean zero, this

distance has an elegant form. Assume that both atoms have

Gaussian distribution:

PðxÞ ¼ 1

ð2�Þ1=3 detðU1Þ1=2
expð�xTU1x=2Þ

QðxÞ ¼ 1

ð2�Þ1=3 detðU2Þ1=2
expð�xTU2x=2Þ: ð22Þ
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Figure 3
Superposition of the structures of bluetongue virus VP4 enzyme with
PDB entries 2jha (green) and 2jhp (blue) (Sutton et al., 2007), which were
solved at 3.4 and 2.5 Å, respectively. The graph shows the resultant R
(solid) and Rfree (dashed) values from ten iterations of refinement of the
low-resolution structure 2jha. Results are shown with (red) and without
(black) external restraints, using 2jhp as prior information. This figure
was produced using PROSMART to superpose the structures, PyMOL
(DeLano, 2002) to display the structures and the software package R (R
Development Core Team, 2007) to generate the graph.
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In this case, the KL divergence becomes

KLðP;QÞ ¼ traceðU�1
1 U2 þ U�1

2 U1 � 2Þ: ð23Þ
In the case of isotropic ADPs, KL has an even simpler form:

KLisoðP;QÞ ¼ 3ðB1=B2 þ B2=B1 � 2Þ ¼ 3
ðB1 � B2Þ2

B1B2

: ð24Þ

REFMAC5 uses restraints based on the KL divergence:P
atom pairs
rij<rmax

wijðrijÞKLði; jÞ: ð25Þ

The summation is over all atom pairs with distance less than

rmax. The weights depend on the nature of the bonds as well as

on the distance between the atoms. If atoms are bonded or

angle-related then the weight is larger. However, the weight

is smaller if the atoms are not related by covalent bonds.

Moreover, if the distance between the atoms is more than 3 Å

then the weight decreases as follows:

wijðrijÞ ¼ 9w0;ij=d2
jj; ð26Þ

where w0,ij is the weight for nonbonded atoms that are closer

than 3 Å to each other.

2.6.7. Rigid-bond restraints. For anisotropic atoms there are

so-called rigid-bond restraints, based on the idea of rigid-bond

tests of anisotropic atoms (Hirshfeld, 1976). The idea is that

projections of U values on the bond vector joining two atoms

should be similar. In other words, if two atoms are bonded

then an oscillation across the bond is more likely than an

independent oscillation along the bond. Atoms oscillate along

the bond in a concerted fashion.

Rigid-bond restraints are designed as follows. Let us assume

that two atoms have positions x1 and x2 and their corre-

sponding ADPs are U1 and U2; the unit vector joining these

atoms is then calculated,

l12 ¼
x1 � x2

jjx1 � x2jj
: ð27Þ

The projections of corresponding U values on this vector are

then calculated as

U1;proj ¼
P
i;j

U1;ijlilj

U2;proj ¼
P
i;j

U2;ijlilj: ð28Þ

Now, using these projections, the KL divergence is formed for

all pairs and added to the target function:

P
jrlkj<rmax

wlk

ðUl;proj � Uk;projÞ2

Ul;projUk;proj

: ð29Þ

Again, the weights depend on the nature of the bonds between

the atoms and the distances between them. Note that if the

ADPs of both bonded atoms are isotropic then the rigid-bond

restraint is equivalent to the above-described KL restraint.

2.6.8. Sphericity restraints. To avoid atoms exploding

and becoming too elliptical or, even worse, non-elliptical,

REFMAC5 uses restraints on sphericity. It is a simple

restraint: an isotropic equivalent of the anisotropic tensor,

P
k

wk

P
i;i

½Uk;ii � traceðUkÞ�2 þ
P
i6¼j

U2
k;ij; ð30Þ

where k indexes the anisotropic atoms, i, j are components

of the anisotropic tensor and wk are weights for this particular

type of restraint. The weights depend on the number of other

restraints (KL, rigid bond) on this atom. Atoms that have

fewer restraints have stronger weights on sphericity, since

these atoms are more likely to be unstable.

It should be noted that similar restraints on ADPs are used

in several other refinement programs (Sheldrick, 2008; Adams

et al., 2010).

3. Parameterization

3.1. General parameters

REFMAC5 uses the standard parameterization of mole-

cules in terms of atomic coordinates and isotropic/anisotropic

atomic displacement parameters. The refinement of these

parameters is performed using an FFT formulation for

gradients and approximations for second derivatives. Details

of these formulations have been published elsewhere

(Murshudov et al., 1997, 1999; Steiner et al., 2003). Once the

gradients and approximate second derivatives have been

calculated for these parameters, they are used to calculate the

derivatives of derived parameters. Derived parameters include

those for rigid-body and TLS refinement.

3.2. Rigid body

Rigid-body parameterization is achieved as follows. For

each rigid group, transformation operators are defined and

new positions are calculated from the starting positions using

the formula

xnew ¼ Rjð�; 	; 
Þðxold � toriginÞ þ tj; ð31Þ

where Rj is the rotation matrix, torigin is the centre of mass of

the rigid group and tj is the translational component of the

transformation. The xold are the starting coordinates of the

atoms and xnew are their positions after application of the

transformation operators. There are six parameters per rigid

group, defining the rotation matrix and the translational

component. At each cycle of refinement, an eigenvalue-

filtering technique is used to avoid potential singularities

arising from the shape of the rigid groups. It should be noted

that no terms between rigid groups are calculated for the

approximate second-derivative matrix. For large rigid groups

this does not pose much of a problem. However, for many

small rigid groups it may slow down convergence substantially.

In any case, it is not recommended to divide molecules into

very small rigid groups. For these cases, ‘jelly-body’ refinement

should produce better results.

Once derivatives with respect to the positional parameters

have been calculated, those for rigid-body parameters are

calculated using the chain rule. The current version of

REFMAC5 uses an Euler angle parameterization.

research papers

Acta Cryst. (2011). D67, 355–367 Murshudov et al. � Refinement with REFMAC5 363
electronic reprint



3.3. TLS

Atomic displacement parameters describe the spread of

atomic positions and can be derived from the Fourier trans-

form of a Gaussian probability distribution function for the

atomic centre. The atomic displacement parameters are an

important part of the model. Traditionally, a single parameter

describing isotropic displacements has been used, namely the

B factor. However, it is well known that atomic displacements

are likely to be anisotropic owing to directional bonding and

at high resolutions the six parameters per atom of a fully

anisotropic model can be refined. TLS refinement is a way of

modelling anisotropic displacements using only a few para-

meters, so that the method can be used at medium and low

resolutions. The TLS model was originally proposed for small-

molecule crystallography (Schomaker & Trueblood, 1968) and

was incorporated into REFMAC5 almost ten years ago (Winn

et al., 2001).

The idea behind TLS is to suppose that groups of atoms

move as rigid bodies and to constrain the anisotropic

displacement parameters of these atoms accordingly. The

rigid-body motion is described by translation (T), libration (L)

and screw (S) tensors, using a total of 20 parameters for each

rigid body. Given values for these 20 parameters, anisotropic

displacement parameters can be derived for each atom in the

group (and this relationship also allows one to calculate

derivatives via the chain rule). Usually, an extra isotropic

displacement parameter (the residual B factor) is refined for

each atom in addition to the TLS contribution. The sum of

these two contributions can be output using the supplemen-

tary program TLSANL (Howlin et al., 1993) or optionally

directly from REFMAC5.

TLS groups need to be chosen before refinement and

constitute part of the definition of the model for the macro-

molecule. Groups of atoms should conform to the idea that

they move as a quasi-rigid body. Often the choice of one group

per chain suffices (or at least serves as a reference calculation)

and this is the default in REFMAC5. More detailed choices

can be made using methods such as TLSMD (Painter &

Merritt, 2006). By default, REFMAC5 also includes waters in

the first hydration shell, which it seems reasonable to assume

move in concert with the protein chain.

Fig. 4 shows the effect of TLS refinement and orientation of

libration tensors. In this case, TLS refinement improves R/Rfree

and the derived libration tensors make biological sense.

4. Optimization

REFMAC5 uses the Gauss–Newton method for optimization.

For an elegant and comprehensive review on optimization

techniques, see Nocedal & Wright (1999). In this method, the

exact second derivative is not calculated, but rather approxi-

mated to make sure it is always non-negative. Once derivatives

or approximations have been calculated, the following linear

equation is built,

H�p ¼ �G; ð32Þ
where H is the approximate second derivative and G is the

gradient vector. The contribution of most of the geometrical

terms are calculated using algorithms designed for quadratic

optimization or least-squares fitting (Press et al., 1992). To

calculate the contribution from the Geman–McClure terms,

the following approximation is used (Huber & Ronchetti,

2009),

GMð�; rÞ ¼ r2

1 þ �2r2

dGM

dr
¼ 2r

ð1 þ �2r2Þ2

d2GM

dr2
’ 2

ð1 þ �2r2Þ2
: ð33Þ

This approximation ensures that H stays non-negative and

consequently directions calculated as a result of the solution of

(32) point towards a reduction of the total function.

The contribution of the X-ray term to the gradient is

calculated using FFT algorithms (Murshudov et al., 1997). The

Fisher information matrix, as described by Steiner et al. (2003),

is used to calculate the contribution of the likelihood functions

to the matrix H. Tests have demonstrated that using the

diagonal elements of the Fisher information matrix and both

diagonal and nondiagonal elements of the geometry terms

results in a more stable refinement.

Once all of the terms contributing to H and G have been

calculated, the linear equation (32) is solved using precondi-

tioned conjugate-gradient methods (Nocedal & Wright, 1999;

Tronrud, 1992). A diagonal matrix formed by the diagonal
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Figure 4
TLS refinement of glucosamine-6-phosphate synthase (Mouilleron &
Golinelli-Pimpaneau, 2007). The results for chain C are shown, which is
separated into two TLS groups. Thermal ellipsoids derived from the TLS
refinement are shown for the two groups. Those in red correspond to the
ligand Fru6P which is included in the TLS group for the synthase domain.
The yellow arrows show the principal axes of the libration tensor for each
TLS group. Inclusion of TLS parameters led to a reduction in R and Rfree

of 3.4% and 3.8%, respectively, and could be related to the biological
function. The principal axis of the libration tensor was calculated using
TLSANL (Howlin et al., 1993) and the figure was prepared using
CCP4mg (Potterton et al., 2004).
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elements of H is used as a preconditioner. This brings para-

meters with different overall scales (positional and B values)

onto the same scale and controlling convergence becomes

easier.

If the conjugate-gradient procedure does not converge in

Nmaxiter cycles (the default is 1000), then the diagonal terms of

the H matrix are increased. Thus, if the matrix is not positive

then ridge regression is activated. In the presence of a

potential (near-) singularity, REFMAC5 uses the following

procedure to solve the linear equation.

(i) Define and use preconditioner. At this stage, H and G

are modified. Define the new matrix by H1 and vector by G1.

(ii) Set 
 = 0.

(iii) Define a new matrix: H2 = H1 + 
I, where I is the

identity matrix.

(iv) Solve the equation H2 p = �G1 using the conjugate-

gradient method for linear equations for sparse and positive-

definite matrices (Press et al., 1992). If convergence was

achieved in less than Nmaxiter iterations, then proceed to the

next step. Otherwise, increase 
 and go to step (iii).

(v) Decondition the matrix, gradient and shift vectors.

(vi) Apply shifts to the atomic parameters, making sure that

the ADPs are positive.

(vii) Calculate the value of the total function.

(viii) If the value of the total function is less than the

previous value, then proceed to the next step. Otherwise,

reduce the shifts and repeat steps (vi)–(viii).

(ix) Finish the refinement cycle.

After application of the shifts, the next cycle of refinement

starts.

5. Conclusions

Refinement is an important step in macromolecular crystal

structure elucidation. It is used as a final step in structure

solution, as well as as an intermediate step to improve models

and obtain improved electron density to facilitate further

model rebuilding.

REFMAC5 is one of the refinement programs that incor-

porates various tools to deal with some crystal peculiarities,

low-resolution MX structure refinement and high-resolution

refinement. There are also tabulated dictionaries of the

constituent blocks of macromolecules, cofactors and ligands.

The number of dictionary elements now exceeds 9000. There

are also tools to deal with new ligands and covalent modifi-

cations of ligands and/or proteins.

Low-resolution MX structure analysis is still a challenging

task. There are several outstanding problems that need to

be dealt with before we can claim that low-resolution MX

analysis is complete. Statistics, image processing and computer

science provide general methods for these and related

problems. Unfortunately, these techniques cannot be directly

applied to MX structure analysis, either because of the huge

computer resources needed or because the assumptions used

are not applicable to MX.

In our opinion, the problems of state-of-the-art MX analysis

that need urgent attention include the following.

(i) Reparameterization depending on the quality and the

amount of experimental data. Some tools implemented in

REFMAC5 allow partial dealing with this problem. These

tools include (a) restraining against known homologous

structures, (b) ‘jelly-body’ restraints or refinement along

implicit normal modes, (c) long-range ADP restraints based

on KL divergence, (d) automatic local and global NCS

restraints and (e) experimental phase-information restraints.

However, low-resolution refinement and model (re)building is

still not as automatic as for high-resolution structures.

(ii) Statistical methods for peculiar crystals with low signal-

to-noise ratio. Some of the implemented tools, such as

likelihood-based twin refinement and SAD/SIRAS refine-

ment, help in the analysis of some of the data produced by

such crystals. The analysis of data from such peculiar crystals

as OD disorder with or without twinning, multiple cells,

translocational disorder or modulated crystals in general

remains problematic.

(iii) Another important problem is that of limited and noisy

data. As a result of resolution cutoff (owing to the survival

time of the crystal under X-ray irradiation or otherwise), the

resultant electron density usually exhibits noise owing to

series termination. If the resolution that the crystal actually

diffracts to is the same as the resolution of the data, then series

termination is not very serious as the signal dies out towards

the limit of the resolution. However, in these cases the elec-

tron density becomes blurred, reflecting high mobility of the

molecules or crystal disorder. When map sharpening is used,

the signal is amplified and series termination becomes a

serious problem. To reduce noise, it is necessary to work with

the full Fourier transformation. In other words, resolution

extension and the prediction of missing reflections becomes an

important problem. The dramatic effect of such an approach

for density modification at high resolution has been demon-

strated by Altomare et al. (2008) and Sheldrick (2008). The

direct replacement of missing reflections by calculated ones

necessarily introduces bias towards model errors and may

mask real signal. To avoid this, it is necessary to integrate over

the errors in the model parameters (coordinates, B values,

scale values and twin fractions). However, since the number of

parameters is very large (sometimes exceeding 1 000 000),

integration using available numerical techniques is not

feasible.

(iv) Error estimation. Despite the advances in MX, there

have been few attempts to evaluate errors in the estimated

parameters. Works attempting to deal with this problem are

few and far between (Sheldrick, 2008). To complete MX

structure analysis, it is necessary to develop and implement

techniques for error estimation. If this is achieved, then

incorrect structures could be eliminated while analysing the

MX data and building the model. One of the promising

approaches to this problem is the Gauss–Markov random field

sampling technique (Hue & Held, 2005) using the (approx-

imate) second derivative as a field-defining matrix.

(v) Multicrystal refinement with the simultaneous multi-

crystal averaging of isomorphous or non-isomorphous crystals

is one of the important directions for low-resolution refine-
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ment. If it is dealt with properly then the number of structures

analysed at low resolution should increase substantially.

Further improvement may consist of a combination of

various experimental techniques. For example, the simulta-

neous treatment of electron-microscopy (EM) and MX data

could increase the reliability of EM models and put MX

models in the context of larger biological systems.

The direct use of unmerged data is another direction in

which refinement procedures could be developed. If this were

achieved, then several long-standing problems could be easier

to deal with. Two such problems are the following. (i) In

general, the space group of a crystal should be considered as

an adjustable parameter. If unmerged data are used, then

space-group assumptions could be tested after every few

sessions of refinement and model building. (ii) Dealing with

the processes in the crystal during data collection requires

unmerged data. One of the best-known such problems is

radiation damage.
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